These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 19586367)

  • 21. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioprinting Using Mechanically Robust Core-Shell Cell-Laden Hydrogel Strands.
    Mistry P; Aied A; Alexander M; Shakesheff K; Bennett A; Yang J
    Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28160431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
    Dubbin K; Hori Y; Lewis KK; Heilshorn SC
    Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.
    Pehlivaner Kara MO; Ekenseair AK
    J Biomed Mater Res A; 2016 Oct; 104(10):2383-93. PubMed ID: 27153299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoll collagen solution as a novel bioink for direct 3D bioprinting.
    Osidak EO; Karalkin PA; Osidak MS; Parfenov VA; Sivogrivov DE; Pereira FDAS; Gryadunova AA; Koudan EV; Khesuani YD; Đšasyanov VA; Belousov SI; Krasheninnikov SV; Grigoriev TE; Chvalun SN; Bulanova EA; Mironov VA; Domogatsky SP
    J Mater Sci Mater Med; 2019 Mar; 30(3):31. PubMed ID: 30830351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive Three-Dimensional
    Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble.
    Liang Z; Liu C; Li L; Xu P; Luo G; Ding M; Liang Q
    Sci Rep; 2016 Sep; 6():33462. PubMed ID: 27628933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel 3D Bioprinter Using Direct-Volumetric Drop-On-Demand Technology for Fabricating Micro-Tissues and Drug-Delivery.
    Grottkau BE; Hui Z; Pang Y
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering.
    Cui J; Wang H; Shi Q; Sun T; Huang Q; Fukuda T
    Molecules; 2019 May; 24(9):. PubMed ID: 31067670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation.
    Xu F; Moon SJ; Emre AE; Turali ES; Song YS; Hacking SA; Nagatomi J; Demirci U
    Biofabrication; 2010 Mar; 2(1):014105. PubMed ID: 20811120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.
    Li M; Yang Q; Liu H; Qiu M; Lu TJ; Xu F
    Small; 2016 Sep; 12(33):4492-500. PubMed ID: 27418038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.
    Zhang W; Huang G; Ng K; Ji Y; Gao B; Huang L; Zhou J; Lu TJ; Xu F
    Biomater Sci; 2018 Mar; 6(4):885-892. PubMed ID: 29511758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo.
    Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM
    Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.