These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis. Pieper U; Wegner A Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188 [TBL] [Abstract][Full Text] [Related]
4. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. Pollard TD J Cell Biol; 1986 Dec; 103(6 Pt 2):2747-54. PubMed ID: 3793756 [TBL] [Abstract][Full Text] [Related]
9. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1984 Aug; 259(16):9983-6. PubMed ID: 6236218 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of ATP hydrolysis by polymeric actin. Ohm T; Wegner A Biochim Biophys Acta; 1994 Sep; 1208(1):8-14. PubMed ID: 8086442 [TBL] [Abstract][Full Text] [Related]
11. Exchange of ADP, ATP and 1: N6-ethenoadenosine 5'-triphosphate at G-actin. Equilibrium and kinetics. Neidl C; Engel J Eur J Biochem; 1979 Nov; 101(1):163-9. PubMed ID: 510301 [No Abstract] [Full Text] [Related]
12. Preparation and polymerization of skeletal muscle ADP-actin. Lal AA; Brenner SL; Korn ED J Biol Chem; 1984 Nov; 259(21):13061-5. PubMed ID: 6490645 [TBL] [Abstract][Full Text] [Related]
13. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments. Teubner A; Wegner A Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568 [TBL] [Abstract][Full Text] [Related]
14. High microfilament concentration results in barbed-end ADP caps. Dufort PA; Lumsden CJ Biophys J; 1993 Nov; 65(5):1757-66. PubMed ID: 8298009 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of adenosine 5'-triphosphate and adenosine 5'-diphosphate interaction with G-actin. Nowak E; Goody RS Biochemistry; 1988 Nov; 27(23):8613-7. PubMed ID: 3219366 [TBL] [Abstract][Full Text] [Related]
16. Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle. Rosenfeld SS; Taylor EW J Biol Chem; 1984 Oct; 259(19):11920-9. PubMed ID: 6480589 [TBL] [Abstract][Full Text] [Related]
17. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP. Frieden C; Patane K Biochemistry; 1985 Jul; 24(15):4192-6. PubMed ID: 4052388 [TBL] [Abstract][Full Text] [Related]
18. Polymerization of ADP-actin and ATP-actin under sonication and characteristics of the ATP-actin equilibrium polymer. Carlier MF; Pantaloni D; Korn ED J Biol Chem; 1985 Jun; 260(11):6565-71. PubMed ID: 3997836 [TBL] [Abstract][Full Text] [Related]
19. Selective binding of gelsolin to actin monomers containing ADP. Laham LE; Lamb JA; Allen PG; Janmey PA J Biol Chem; 1993 Jul; 268(19):14202-7. PubMed ID: 8390984 [TBL] [Abstract][Full Text] [Related]
20. The interaction between ATP-actin and ADP-actin. A tentative model for actin polymerization. Pantaloni D; Carlier MF; Korn ED J Biol Chem; 1985 Jun; 260(11):6572-8. PubMed ID: 3997837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]