These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1958663)

  • 1. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit.
    Xin X; Xi L; Tu SC
    Biochemistry; 1991 Nov; 30(47):11255-62. PubMed ID: 1958663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Vibrio harveyi luciferase beta subunit functionality and the intersubunit domain by site-directed mutagenesis.
    Xin X; Xi L; Tu SC
    Biochemistry; 1994 Oct; 33(40):12194-201. PubMed ID: 7918440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase.
    Low JC; Tu SC
    Biochemistry; 2002 Feb; 41(6):1724-31. PubMed ID: 11827516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant.
    Huang S; Tu SC
    Biochemistry; 1997 Dec; 36(48):14609-15. PubMed ID: 9402752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(42):13866-73. PubMed ID: 16229475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site.
    Chen LH; Baldwin TO
    Biochemistry; 1989 Mar; 28(6):2684-9. PubMed ID: 2730882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and characterization of hybrid luciferases coded by lux genes from Xenorhabdus luminescens and Vibrio fischeri.
    Xi L; Tu SC
    Photochem Photobiol; 1993 Apr; 57(4):714-9. PubMed ID: 8506400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color.
    Branchini BR; Magyar RA; Murtiashaw MH; Anderson SM; Helgerson LC; Zimmer M
    Biochemistry; 1999 Oct; 38(40):13223-30. PubMed ID: 10529195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli.
    Baldwin TO; Berends T; Bunch TA; Holzman TF; Rausch SK; Shamansky L; Treat ML; Ziegler MM
    Biochemistry; 1984 Jul; 23(16):3663-7. PubMed ID: 6089876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol.
    Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM
    J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species.
    Cho KW; Tu SC; Shao R
    Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 3' end deletions from the Vibrio harveyi luxB gene on luciferase subunit folding and enzyme assembly: generation of temperature-sensitive polypeptide folding mutants.
    Sugihara J; Baldwin TO
    Biochemistry; 1988 Apr; 27(8):2872-80. PubMed ID: 2840951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The beta subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42 degrees C.
    Escher A; O'Kane DJ; Szalay AA
    Mol Gen Genet; 1991 Dec; 230(3):385-93. PubMed ID: 1685011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase.
    Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA
    Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.