BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19586635)

  • 1. Rational optimization of the Whelk-O1 chiral stationary phase using molecular dynamics simulations.
    Zhao CF; Diemert S; Cann NM
    J Chromatogr A; 2009 Aug; 1216(32):5968-78. PubMed ID: 19586635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The docking of chiral epoxides on the Whelk-O1 stationary phase: a molecular dynamics study.
    Zhao C; Cann NM
    J Chromatogr A; 2007 May; 1149(2):197-218. PubMed ID: 17433341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of chiral recognition for the whelk-O1 chiral stationary phase.
    Zhao CF; Cann NM
    Anal Chem; 2008 Apr; 80(7):2426-38. PubMed ID: 18321129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation of the Whelk-O1 chiral stationary phase: a molecular dynamics study.
    Zhao C; Cann NM
    J Chromatogr A; 2006 Oct; 1131(1-2):110-29. PubMed ID: 16950326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioresolution of chiral derivatives of xanthones on (S,S)-Whelk-O1 and L-phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1.
    Fernandes C; Palmeira A; Santos A; Tiritan ME; Afonso C; Pinto MM
    Chirality; 2013 Feb; 25(2):89-100. PubMed ID: 23229954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adsorption of Naproxen enantiomers on the chiral stationary phase (R,R)-Whelk-O1 under reversed-phase conditions: the effect of mobile phase composition.
    Asnin LD; Guiochon G
    J Chromatogr A; 2010 Apr; 1217(17):2871-8. PubMed ID: 20307884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Features of the adsorption of Naproxen on the chiral stationary phase (S,S)-Whelk-O1 under reversed-phase conditions.
    Asnin L; Gritti F; Kaczmarski K; Guiochon G
    J Chromatogr A; 2010 Jan; 1217(3):264-75. PubMed ID: 20003981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adsorption of Naproxen enantiomers on the chiral stationary phase Whelk-O1 under reversed-phase conditions: the effect of buffer composition.
    Asnin L; Kaczmarski K; Guiochon G
    J Chromatogr A; 2010 Nov; 1217(45):7055-64. PubMed ID: 20870243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Recognition of the HPLC Whelk-O1 Selector towards the Conformational Enantiomers of Nevirapine and Oxcarbazepine.
    Franzini R; Pierini M; Mazzanti A; Iazzetti A; Ciogli A; Villani C
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of Naproxen enantiomers on the chiral stationary phase Whelk-O1 under reversed-phase conditions. A reconsideration of the adsorption mechanism in the light of new experimental data.
    Asnin LD; Guiochon G
    J Chromatogr A; 2010 Mar; 1217(10):1709-11. PubMed ID: 20116794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiomeric separation in high-performance liquid chromatography using novel β-cyclodextrin derivatives modified by R-configuration groups as chiral stationary phases.
    Li X; Zhou ZM; Xu D; Zhang J
    Talanta; 2011 May; 84(4):1080-92. PubMed ID: 21530782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The comparison in enantioseparation ability of the chiral stationary phases with single and mixed selector--the selectors derived from two D-tartrates.
    Chen J; Li MZ; Xiao YH; Chen W; Li SR; Bai ZW
    Chirality; 2011 Mar; 23(3):228-36. PubMed ID: 20882599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of factors affecting chiral separations under reversed-phase conditions using cellulosic and Pirkle-type chiral selectors.
    Tang L; Xiang D; Blackwell JA
    Enantiomer; 2000; 5(3-4):345-55. PubMed ID: 11126875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective ultra-high and high performance liquid chromatography: a comparative study of columns based on the Whelk-O1 selector.
    Kotoni D; Ciogli A; D'Acquarica I; Kocergin J; Szczerba T; Ritchie H; Villani C; Gasparrini F
    J Chromatogr A; 2012 Dec; 1269():226-41. PubMed ID: 23040980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening approach, optimisation and scale-up for chiral liquid chromatography of cathinones.
    Perera RW; Abraham I; Gupta S; Kowalska P; Lightsey D; Marathaki C; Singh NS; Lough WJ
    J Chromatogr A; 2012 Dec; 1269():189-97. PubMed ID: 23174478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Brush-Type Chiral Stationary Phases for Enantioseparation of Pharmaceutical Drugs.
    Knežević A; Novak J; Vinković V
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30823585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation of phenylglycine- and leucine-derived chiral stationary phases: molecular dynamics simulation study.
    Nita S; Cann NM
    J Phys Chem B; 2008 Oct; 112(41):13022-37. PubMed ID: 18811188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution, determination of enantiomeric purity and chiral recognition mechanism of new xanthone derivatives on (S,S)-whelk-O1 stationary phase.
    Carraro ML; Palmeira A; Tiritan ME; Fernandes C; Pinto MMM
    Chirality; 2017 Jun; 29(6):247-256. PubMed ID: 28439971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline-based chiral stationary phases: a molecular dynamics study of the interfacial structure.
    Ashtari M; Cann NM
    J Chromatogr A; 2011 Sep; 1218(37):6331-47. PubMed ID: 21798547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of aromatic substituents on the chromatographic enantioseparation of diarylmethyl esters with the whelk-O1 chiral stationary phase.
    Job GE; Shvets A; Pirkle WH; Kuwahara S; Kosaka M; Kasai Y; Taji H; Fujita K; Watanabe M; Harada N
    J Chromatogr A; 2004 Nov; 1055(1-2):41-53. PubMed ID: 15560478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.