These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19586686)

  • 1. Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    Sui X; Sun J; Li H; Wang Y; Liu J; Liu X; Zhang W; Chen L; He Z
    Eur J Med Chem; 2009 Nov; 44(11):4455-60. PubMed ID: 19586686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics.
    Lombardo F; Obach RS; Shalaeva MY; Gao F
    J Med Chem; 2004 Feb; 47(5):1242-50. PubMed ID: 14971904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data.
    Lombardo F; Obach RS; Shalaeva MY; Gao F
    J Med Chem; 2002 Jun; 45(13):2867-76. PubMed ID: 12061889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis.
    Gleeson MP
    J Med Chem; 2007 Jan; 50(1):101-12. PubMed ID: 17201414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the Øie-Tozer model in understanding mechanisms and determinants of drug distribution.
    Waters NJ; Lombardo F
    Drug Metab Dispos; 2010 Jul; 38(7):1159-65. PubMed ID: 20375179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of human pharmacokinetics--evaluation of methods for prediction of volume of distribution.
    Fagerholm U
    J Pharm Pharmacol; 2007 Sep; 59(9):1181-90. PubMed ID: 17883888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human.
    Lombardo F; Obach RS; Dicapua FM; Bakken GA; Lu J; Potter DM; Gao F; Miller MD; Zhang Y
    J Med Chem; 2006 Apr; 49(7):2262-7. PubMed ID: 16570922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning.
    Hollósy F; Valkó K; Hersey A; Nunhuck S; Kéri G; Bevan C
    J Med Chem; 2006 Nov; 49(24):6958-71. PubMed ID: 17125249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach for the tissue-blood partition coefficients of neutral and ionized compounds.
    Zhang H
    J Chem Inf Model; 2005; 45(1):121-7. PubMed ID: 15667137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between immobilized artificial membrane chromatographic retention and human oral absorption of structurally diverse drugs.
    Kotecha J; Shah S; Rathod I; Subbaiah G
    Int J Pharm; 2007 Mar; 333(1-2):127-35. PubMed ID: 17095172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of drug binding to plasma proteins using a variant of equilibrium dialysis.
    Eriksson MA; Gabrielsson J; Nilsson LB
    J Pharm Biomed Anal; 2005 Jul; 38(3):381-9. PubMed ID: 15925237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of human pharmacokinetics--improving microsome-based predictions of hepatic metabolic clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Oct; 59(10):1427-31. PubMed ID: 17910819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.
    Valko K; Nunhuck S; Bevan C; Abraham MH; Reynolds DP
    J Pharm Sci; 2003 Nov; 92(11):2236-48. PubMed ID: 14603509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-pharmacokinetic relationship modelling: apparent volume of distribution.
    Ghafourian T; Barzegar-Jalali M; Hakimiha N; Cronin MT
    J Pharm Pharmacol; 2004 Mar; 56(3):339-50. PubMed ID: 15025859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Accurate In Vitro Prediction of Human VD
    Berellini G; Lombardo F
    Drug Metab Dispos; 2019 Dec; 47(12):1380-1387. PubMed ID: 31578209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel method for predicting human volume of distribution at steady-state of basic drugs and comparative assessment with existing methods.
    Poulin P; Theil FP
    J Pharm Sci; 2009 Dec; 98(12):4941-61. PubMed ID: 19455625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases.
    Barbato F; di Martino G; Grumetto L; La Rotonda MI
    Eur J Pharm Sci; 2004 Jul; 22(4):261-9. PubMed ID: 15196582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning.
    Korzekwa K; Nagar S
    Pharm Res; 2017 Mar; 34(3):544-551. PubMed ID: 27966088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of volume of distribution at steady state in humans: comparison of different approaches.
    Zou P; Zheng N; Yang Y; Yu LX; Sun D
    Expert Opin Drug Metab Toxicol; 2012 Jul; 8(7):855-72. PubMed ID: 22591253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: volume of distribution at steady state.
    Wajima T; Fukumura K; Yano Y; Oguma T
    J Pharm Pharmacol; 2003 Jul; 55(7):939-49. PubMed ID: 12906751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.