These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 1958671)
1. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. Meiering EM; Bycroft M; Fersht AR Biochemistry; 1991 Nov; 30(47):11348-56. PubMed ID: 1958671 [TBL] [Abstract][Full Text] [Related]
2. Structure and dynamics of barnase complexed with 3'-GMP studied by NMR spectroscopy. Meiering EM; Bycroft M; Lubienski MJ; Fersht AR Biochemistry; 1993 Oct; 32(41):10975-87. PubMed ID: 8218163 [TBL] [Abstract][Full Text] [Related]
3. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
4. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering. Vuilleumier S; Fersht AR Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455 [TBL] [Abstract][Full Text] [Related]
5. X-ray structural analysis of compensating mutations at the barnase-barstar interface. Martin C; Hartley R; Mauguen Y FEBS Lett; 1999 Jun; 452(3):128-32. PubMed ID: 10386576 [TBL] [Abstract][Full Text] [Related]
6. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. Jones DN; Bycroft M; Lubienski MJ; Fersht AR FEBS Lett; 1993 Sep; 331(1-2):165-72. PubMed ID: 8405399 [TBL] [Abstract][Full Text] [Related]
8. Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Perrett S; Clarke J; Hounslow AM; Fersht AR Biochemistry; 1995 Jul; 34(29):9288-98. PubMed ID: 7626599 [TBL] [Abstract][Full Text] [Related]
9. Stability and folding of the protein complexes of barnase. Neira JL; Vázquez E; Fersht AR Eur J Biochem; 2000 May; 267(10):2859-70. PubMed ID: 10806383 [TBL] [Abstract][Full Text] [Related]
10. Stability and function: two constraints in the evolution of barstar and other proteins. Schreiber G; Buckle AM; Fersht AR Structure; 1994 Oct; 2(10):945-51. PubMed ID: 7866746 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence. Loewenthal R; Sancho J; Fersht AR Biochemistry; 1991 Jul; 30(27):6775-9. PubMed ID: 2065058 [TBL] [Abstract][Full Text] [Related]
13. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Schreiber G; Fersht AR Biochemistry; 1993 May; 32(19):5145-50. PubMed ID: 8494892 [TBL] [Abstract][Full Text] [Related]
14. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Buckle AM; Schreiber G; Fersht AR Biochemistry; 1994 Aug; 33(30):8878-89. PubMed ID: 8043575 [TBL] [Abstract][Full Text] [Related]
15. The role of Glu73 of barnase in catalysis and the binding of barstar. Schreiber G; Frisch C; Fersht AR J Mol Biol; 1997 Jul; 270(1):111-22. PubMed ID: 9231905 [TBL] [Abstract][Full Text] [Related]
16. Foldability, enzymatic activity, and interacting ability of barnase mutants obtained by permutation of secondary structure units. Tsuji T; Yanagawa H Biochemistry; 2004 Jun; 43(22):6968-75. PubMed ID: 15170334 [TBL] [Abstract][Full Text] [Related]
17. Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. Zahn R; Perrett S; Fersht AR J Mol Biol; 1996 Aug; 261(1):43-61. PubMed ID: 8760501 [TBL] [Abstract][Full Text] [Related]
18. Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution. Buckle AM; Fersht AR Biochemistry; 1994 Feb; 33(7):1644-53. PubMed ID: 8110767 [TBL] [Abstract][Full Text] [Related]
19. Folding of barnase in the presence of the molecular chaperone SecB. Stenberg G; Fersht AR J Mol Biol; 1997 Nov; 274(2):268-75. PubMed ID: 9398532 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Kuo LC; Miller AW; Lee S; Kozuma C Biochemistry; 1988 Nov; 27(24):8823-32. PubMed ID: 3072022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]