BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19586715)

  • 1. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study.
    Tsai TT; Kao CM; Hong A
    J Hazard Mater; 2009 Nov; 171(1-3):571-6. PubMed ID: 19586715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.
    Tsai TT; Kao CM; Wang JY
    Chemosphere; 2011 Apr; 83(5):687-92. PubMed ID: 21377186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag.
    Tsai TT; Kao CM
    J Hazard Mater; 2009 Oct; 170(1):466-72. PubMed ID: 19450924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination.
    Kim ES; Lee DH; Yum BW; Chang HW
    J Hazard Mater; 2005 Mar; 119(1-3):195-203. PubMed ID: 15752866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant.
    Clifford JS; Ioannidis MA; Legge RL
    J Colloid Interface Sci; 2007 Jan; 305(2):361-5. PubMed ID: 17081555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.
    Lee CC; Doong RA
    Environ Sci Technol; 2011 Mar; 45(6):2301-7. PubMed ID: 21341692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware.
    Childs J; Acosta E; Annable MD; Brooks MC; Enfield CG; Harwell JH; Hasegawa M; Knox RC; Rao PS; Sabatini DA; Shiau B; Szekeres E; Wood AL
    J Contam Hydrol; 2006 Jan; 82(1-2):1-22. PubMed ID: 16233935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media.
    Hoggan JL; Bae K; Kibbey TC
    J Contam Hydrol; 2007 Aug; 93(1-4):149-60. PubMed ID: 17303284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCE oxidation by sodium persulfate in the presence of solids.
    Costanza J; OtaƱo G; Callaghan J; Pennell KD
    Environ Sci Technol; 2010 Dec; 44(24):9445-50. PubMed ID: 21070044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate.
    Zhai X; Hua I; Rao PS; Lee LS
    J Contam Hydrol; 2006 Jan; 82(1-2):61-74. PubMed ID: 16229923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag.
    Xue Y; Hou H; Zhu S
    J Hazard Mater; 2009 Mar; 162(2-3):973-80. PubMed ID: 18614283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of H(2)O(2) and O3 effects on radiation treatment of TCE and PCE.
    Jung J; Yoon JH; Chung HH; Lee MJ
    Chemosphere; 2003 Jun; 51(9):881-5. PubMed ID: 12697178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the density-modified displacement method for efficient treatment of tetrachloroethene source zones.
    Ramsburg CA; Pennell KD; Kibbey TC; Hayes KF
    J Contam Hydrol; 2004 Oct; 74(1-4):105-31. PubMed ID: 15358489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of 2,4-dinitrophenol by hydrogen peroxide in the presence of basic oxygen furnace slag.
    Li YS; You YH; Lien ET
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):427-33. PubMed ID: 10508889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid.
    Doong RA; Lai YJ
    Water Res; 2005 Jun; 39(11):2309-18. PubMed ID: 15941576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced PCE dechlorination by biobarrier systems under different redox conditions.
    Kao CM; Chen YL; Chen SC; Yeh TY; Wu WS
    Water Res; 2003 Dec; 37(20):4885-94. PubMed ID: 14604634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--a column study.
    Li Z; Willms C; Alley J; Zhang P; Bowman RS
    Water Res; 2006 Dec; 40(20):3811-9. PubMed ID: 17055029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.