These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 19586910)
1. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. Poor CB; Chen PR; Duguid E; Rice PA; He C J Biol Chem; 2009 Aug; 284(35):23517-24. PubMed ID: 19586910 [TBL] [Abstract][Full Text] [Related]
2. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Chen PR; Nishida S; Poor CB; Cheng A; Bae T; Kuechenmeister L; Dunman PM; Missiakas D; He C Mol Microbiol; 2009 Jan; 71(1):198-211. PubMed ID: 19007410 [TBL] [Abstract][Full Text] [Related]
3. The oxidation-sensing regulator (MosR) is a new redox-dependent transcription factor in Mycobacterium tuberculosis. Brugarolas P; Movahedzadeh F; Wang Y; Zhang N; Bartek IL; Gao YN; Voskuil MI; Franzblau SG; He C J Biol Chem; 2012 Nov; 287(45):37703-12. PubMed ID: 22992749 [TBL] [Abstract][Full Text] [Related]
4. sarZ, a sarA family gene, is transcriptionally activated by MgrA and is involved in the regulation of genes encoding exoproteins in Staphylococcus aureus. Ballal A; Ray B; Manna AC J Bacteriol; 2009 Mar; 191(5):1656-65. PubMed ID: 19103928 [TBL] [Abstract][Full Text] [Related]
5. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. Baker LM; Poole LB J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184 [TBL] [Abstract][Full Text] [Related]
6. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Rehder DS; Borges CR Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299 [TBL] [Abstract][Full Text] [Related]
7. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738 [TBL] [Abstract][Full Text] [Related]
8. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Takanishi CL; Ma LH; Wood MJ Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457 [TBL] [Abstract][Full Text] [Related]
9. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. Panmanee W; Vattanaviboon P; Poole LB; Mongkolsuk S J Bacteriol; 2006 Feb; 188(4):1389-95. PubMed ID: 16452421 [TBL] [Abstract][Full Text] [Related]
10. An L40C mutation converts the cysteine-sulfenic acid redox center in enterococcal NADH peroxidase to a disulfide. Miller H; Mande SS; Parsonage D; Sarfaty SH; Hol WG; Claiborne A Biochemistry; 1995 Apr; 34(15):5180-90. PubMed ID: 7711038 [TBL] [Abstract][Full Text] [Related]
11. Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. Ji Q; Zhang L; Sun F; Deng X; Liang H; Bae T; He C J Biol Chem; 2012 Jun; 287(25):21102-9. PubMed ID: 22553203 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism of oxidative stress perception by the Orp1 protein. Ma LH; Takanishi CL; Wood MJ J Biol Chem; 2007 Oct; 282(43):31429-36. PubMed ID: 17720812 [TBL] [Abstract][Full Text] [Related]
13. Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus. Kaito C; Morishita D; Matsumoto Y; Kurokawa K; Sekimizu K Mol Microbiol; 2006 Dec; 62(6):1601-17. PubMed ID: 17087772 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines. Muñoz-Clares RA; González-Segura L; Murillo-Melo DS; Riveros-Rosas H Chem Biol Interact; 2017 Oct; 276():52-64. PubMed ID: 28216341 [TBL] [Abstract][Full Text] [Related]
15. Structural Insights into the Redox-Sensing Mechanism of MarR-Type Regulator AbfR. Liu G; Liu X; Xu H; Liu X; Zhou H; Huang Z; Gan J; Chen H; Lan L; Yang CG J Am Chem Soc; 2017 Feb; 139(4):1598-1608. PubMed ID: 28086264 [TBL] [Abstract][Full Text] [Related]
16. RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. Wu J; Cheng Z; Reddie K; Carroll K; Hammad LA; Karty JA; Bauer CE J Biol Chem; 2013 Feb; 288(7):4755-62. PubMed ID: 23306201 [TBL] [Abstract][Full Text] [Related]
17. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Chen PR; Bae T; Williams WA; Duguid EM; Rice PA; Schneewind O; He C Nat Chem Biol; 2006 Nov; 2(11):591-5. PubMed ID: 16980961 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Staphylococcal Capsule by SarZ is SigA-Dependent. Lei MG; Lee CY J Bacteriol; 2022 Aug; 204(8):e0015222. PubMed ID: 35862799 [TBL] [Abstract][Full Text] [Related]
19. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide. Cuevasanta E; Lange M; Bonanata J; Coitiño EL; Ferrer-Sueta G; Filipovic MR; Alvarez B J Biol Chem; 2015 Nov; 290(45):26866-26880. PubMed ID: 26269587 [TBL] [Abstract][Full Text] [Related]
20. Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification. Forman HJ; Davies MJ; Krämer AC; Miotto G; Zaccarin M; Zhang H; Ursini F Arch Biochem Biophys; 2017 Mar; 617():26-37. PubMed ID: 27693037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]