These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 19586916)
1. Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. Terauchi AM; Lu SF; Zaffagnini M; Tappa S; Hirasawa M; Tripathy JN; Knaff DB; Farmer PJ; Lemaire SD; Hase T; Merchant SS J Biol Chem; 2009 Sep; 284(38):25867-78. PubMed ID: 19586916 [TBL] [Abstract][Full Text] [Related]
2. Multiple ferredoxin isoforms in Chlamydomonas reinhardtii - their role under stress conditions and biotechnological implications. Winkler M; Hemschemeier A; Jacobs J; Stripp S; Happe T Eur J Cell Biol; 2010 Dec; 89(12):998-1004. PubMed ID: 20696493 [TBL] [Abstract][Full Text] [Related]
3. Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. Peden EA; Boehm M; Mulder DW; Davis R; Old WM; King PW; Ghirardi ML; Dubini A J Biol Chem; 2013 Dec; 288(49):35192-209. PubMed ID: 24100040 [TBL] [Abstract][Full Text] [Related]
4. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1. van Lis R; Baffert C; Couté Y; Nitschke W; Atteia A Plant Physiol; 2013 Jan; 161(1):57-71. PubMed ID: 23154536 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1. Boehm M; Alahuhta M; Mulder DW; Peden EA; Long H; Brunecky R; Lunin VV; King PW; Ghirardi ML; Dubini A Photosynth Res; 2016 Apr; 128(1):45-57. PubMed ID: 26526668 [TBL] [Abstract][Full Text] [Related]
6. Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. Noth J; Krawietz D; Hemschemeier A; Happe T J Biol Chem; 2013 Feb; 288(6):4368-77. PubMed ID: 23258532 [TBL] [Abstract][Full Text] [Related]
7. A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii. Jacobs J; Pudollek S; Hemschemeier A; Happe T FEBS Lett; 2009 Jan; 583(2):325-9. PubMed ID: 19101555 [TBL] [Abstract][Full Text] [Related]
8. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Huppe HC; de Lamotte-Guéry F; Jacquot J-P ; Buchanan BB Planta; 1990; 180():341-51. PubMed ID: 11538175 [TBL] [Abstract][Full Text] [Related]
10. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii. Page MD; Allen MD; Kropat J; Urzica EI; Karpowicz SJ; Hsieh SI; Loo JA; Merchant SS Plant Cell; 2012 Jun; 24(6):2649-65. PubMed ID: 22685165 [TBL] [Abstract][Full Text] [Related]
11. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. Sawyer A; Winkler M Photosynth Res; 2017 Dec; 134(3):307-316. PubMed ID: 28620699 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Lin YH; Pan KY; Hung CH; Huang HE; Chen CL; Feng TY; Huang LF Int J Mol Sci; 2013 Oct; 14(10):20913-29. PubMed ID: 24141188 [TBL] [Abstract][Full Text] [Related]
13. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Shi Y; Ghosh M; Kovtunovych G; Crooks DR; Rouault TA Biochim Biophys Acta; 2012 Feb; 1823(2):484-92. PubMed ID: 22101253 [TBL] [Abstract][Full Text] [Related]
14. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell. Huang LF; Lin JY; Pan KY; Huang CK; Chu YK Int J Mol Sci; 2015 Aug; 16(8):19308-25. PubMed ID: 26287179 [TBL] [Abstract][Full Text] [Related]
15. Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. Jacquot JP; Stein M; Suzuki A; Liottet S; Sandoz G; Miginiac-Maslow M FEBS Lett; 1997 Jan; 400(3):293-6. PubMed ID: 9009217 [TBL] [Abstract][Full Text] [Related]
16. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Terashima M; Specht M; Hippler M Curr Genet; 2011 Jun; 57(3):151-68. PubMed ID: 21533645 [TBL] [Abstract][Full Text] [Related]
17. Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process. Galván A; Rexach J; Mariscal V; Fernández E J Exp Bot; 2002 Apr; 53(370):845-53. PubMed ID: 11912227 [TBL] [Abstract][Full Text] [Related]
18. [The impact of melafen on the expression of chloroplastic chaperone protein HSP70B and photosynthetic pigments in cells of Chlamydomonas reinhardtii]. Ermokhina OV; Belkina GG; Oleskina IuP; Fattakhov SG; Iurina NP Prikl Biokhim Mikrobiol; 2009; 45(5):612-7. PubMed ID: 19845296 [TBL] [Abstract][Full Text] [Related]
19. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Sandoval-Vargas JM; Jiménez-Clemente LA; Macedo-Osorio KS; Oliver-Salvador MC; Fernández-Linares LC; Durán-Figueroa NV; Badillo-Corona JA Mol Biotechnol; 2019 Jun; 61(6):461-468. PubMed ID: 30997667 [TBL] [Abstract][Full Text] [Related]
20. Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii reveals the unique properties of a chloroplastic CGFS-type glutaredoxin. Zaffagnini M; Michelet L; Massot V; Trost P; Lemaire SD J Biol Chem; 2008 Apr; 283(14):8868-76. PubMed ID: 18216016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]