These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19587281)
1. Phosphorylation of prion protein at serine 43 induces prion protein conformational change. Giannopoulos PN; Robertson C; Jodoin J; Paudel H; Booth SA; LeBlanc AC J Neurosci; 2009 Jul; 29(27):8743-51. PubMed ID: 19587281 [TBL] [Abstract][Full Text] [Related]
2. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure. Rouget R; Sharma G; LeBlanc AC J Biol Chem; 2015 Feb; 290(9):5759-71. PubMed ID: 25572400 [TBL] [Abstract][Full Text] [Related]
3. Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231). Martins SM; Frosoni DJ; Martinez AM; De Felice FG; Ferreira ST J Biol Chem; 2006 Sep; 281(36):26121-8. PubMed ID: 16844683 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of the anti-prionic activity of newly synthesized congo red derivatives. Poli G; Ponti W; Carcassola G; Ceciliani F; Colombo L; Dall'Ara P; Gervasoni M; Giannino ML; Martino PA; Pollera C; Villa S; Salmona M Arzneimittelforschung; 2003; 53(12):875-88. PubMed ID: 14750496 [TBL] [Abstract][Full Text] [Related]
6. Disulfide-crosslink scanning reveals prion-induced conformational changes and prion strain-specific structures of the pathological prion protein PrP Taguchi Y; Lu L; Marrero-Winkens C; Otaki H; Nishida N; Schatzl HM J Biol Chem; 2018 Aug; 293(33):12730-12740. PubMed ID: 29934306 [TBL] [Abstract][Full Text] [Related]
7. Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-Beta and prion peptides: implications for Alzheimer's disease and prion-related encephalopathies. Lopes JP; Oliveira CR; Agostinho P Cell Mol Neurobiol; 2007 Nov; 27(7):943-57. PubMed ID: 17965932 [TBL] [Abstract][Full Text] [Related]
8. Flexible N-terminal region of prion protein influences conformation of protease-resistant prion protein isoforms associated with cross-species scrapie infection in vivo and in vitro. Lawson VA; Priola SA; Meade-White K; Lawson M; Chesebro B J Biol Chem; 2004 Apr; 279(14):13689-95. PubMed ID: 14736880 [TBL] [Abstract][Full Text] [Related]
9. Post-translational hydroxylation at the N-terminus of the prion protein reveals presence of PPII structure in vivo. Gill AC; Ritchie MA; Hunt LG; Steane SE; Davies KG; Bocking SP; Rhie AG; Bennett AD; Hope J EMBO J; 2000 Oct; 19(20):5324-31. PubMed ID: 11032800 [TBL] [Abstract][Full Text] [Related]
10. How does domain replacement affect fibril formation of the rabbit/human prion proteins. Yan X; Huang JJ; Zhou Z; Chen J; Liang Y PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497 [TBL] [Abstract][Full Text] [Related]
11. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice. Hara H; Miyata H; Das NR; Chida J; Yoshimochi T; Uchiyama K; Watanabe H; Kondoh G; Yokoyama T; Sakaguchi S J Virol; 2018 Jan; 92(1):. PubMed ID: 29046443 [TBL] [Abstract][Full Text] [Related]
12. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. Selvaggini C; De Gioia L; Cantù L; Ghibaudi E; Diomede L; Passerini F; Forloni G; Bugiani O; Tagliavini F; Salmona M Biochem Biophys Res Commun; 1993 Aug; 194(3):1380-6. PubMed ID: 8102526 [TBL] [Abstract][Full Text] [Related]
13. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein. Walsh P; Simonetti K; Sharpe S Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656 [TBL] [Abstract][Full Text] [Related]
14. Novel assay with fluorescence-labelled PrP peptides for differentiating L-type atypical and classical BSEs, and scrapie. Kasai K; Hirata A; Ohyama T; Nokihara K; Yokoyama T; Mohri S FEBS Lett; 2012 Feb; 586(4):325-9. PubMed ID: 22285492 [TBL] [Abstract][Full Text] [Related]
15. Accessibility of a critical prion protein region involved in strain recognition and its implications for the early detection of prions. Yuan J; Dong Z; Guo JP; McGeehan J; Xiao X; Wang J; Cali I; McGeer PL; Cashman NR; Bessen R; Surewicz WK; Kneale G; Petersen RB; Gambetti P; Zou WQ Cell Mol Life Sci; 2008 Feb; 65(4):631-43. PubMed ID: 18193391 [TBL] [Abstract][Full Text] [Related]
16. Epitope scanning reveals gain and loss of strain specific antibody binding epitopes associated with the conversion of normal cellular prion to scrapie prion. Pan T; Li R; Kang SC; Wong BS; Wisniewski T; Sy MS J Neurochem; 2004 Sep; 90(5):1205-17. PubMed ID: 15312175 [TBL] [Abstract][Full Text] [Related]
18. Amino acid sequence and prion strain specific effects on the in vitro and in vivo convertibility of ovine/murine and bovine/murine prion protein chimeras. Kupfer L; Eiden M; Buschmann A; Groschup MH Biochim Biophys Acta; 2007 Jun; 1772(6):704-13. PubMed ID: 17145171 [TBL] [Abstract][Full Text] [Related]
19. Glycosylation deficiency at either one of the two glycan attachment sites of cellular prion protein preserves susceptibility to bovine spongiform encephalopathy and scrapie infections. Neuendorf E; Weber A; Saalmueller A; Schatzl H; Reifenberg K; Pfaff E; Groschup MH J Biol Chem; 2004 Dec; 279(51):53306-16. PubMed ID: 15448157 [TBL] [Abstract][Full Text] [Related]
20. Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Kaneko K; Peretz D; Pan KM; Blochberger TC; Wille H; Gabizon R; Griffith OH; Cohen FE; Baldwin MA; Prusiner SB Proc Natl Acad Sci U S A; 1995 Nov; 92(24):11160-4. PubMed ID: 7479957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]