These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19587289)

  • 1. Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord.
    Chakrabarty S; Shulman B; Martin JH
    J Neurosci; 2009 Jul; 29(27):8816-27. PubMed ID: 19587289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits.
    Chakrabarty S; Martin JH
    J Neurosci; 2010 Feb; 30(6):2277-88. PubMed ID: 20147554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential joint-specific corticospinal tract projections within the cervical enlargement.
    Asante CO; Martin JH
    PLoS One; 2013; 8(9):e74454. PubMed ID: 24058570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S; Martin JH
    Eur J Neurosci; 2011 Sep; 34(5):682-94. PubMed ID: 21896059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal refinement of proprioceptive afferents in the cat cervical spinal cord.
    Chakrabarty S; Martin J
    Eur J Neurosci; 2011 May; 33(9):1656-66. PubMed ID: 21501251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord maturation and locomotion in mice with an isolated cortex.
    Han Q; Feng J; Qu Y; Ding Y; Wang M; So KF; Wu W; Zhou L
    Neuroscience; 2013 Dec; 253():235-44. PubMed ID: 24012835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient functional connections between the developing corticospinal tract and cervical spinal interneurons as demonstrated by c-fos immunohistochemistry.
    Curfs MH; Gribnau AA; Dederen PJ; Bergervoet-Vernooij HW
    Brain Res Dev Brain Res; 1995 Jul; 87(2):214-9. PubMed ID: 7586504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections.
    Mitchell EJ; McCallum S; Dewar D; Maxwell DJ
    PLoS One; 2016; 11(3):e0152094. PubMed ID: 26999665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss.
    Jiang YQ; Sarkar A; Amer A; Martin JH
    J Neurosci; 2018 Sep; 38(39):8329-8344. PubMed ID: 30049887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development.
    Friel K; Chakrabarty S; Kuo HC; Martin J
    J Neurosci; 2012 Jul; 32(27):9265-76. PubMed ID: 22764234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
    Salimi I; Martin JH
    J Neurosci; 2004 May; 24(21):4952-61. PubMed ID: 15163687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.
    Chakrabarty S; Friel KM; Martin JH
    J Neurophysiol; 2009 Mar; 101(3):1283-93. PubMed ID: 19091920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia.
    Tan AM; Chakrabarty S; Kimura H; Martin JH
    J Neurosci; 2012 Sep; 32(37):12896-908. PubMed ID: 22973013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal phenotype and localization of spinal cord V1 derived interneurons.
    Alvarez FJ; Jonas PC; Sapir T; Hartley R; Berrocal MC; Geiman EJ; Todd AJ; Goulding M
    J Comp Neurol; 2005 Dec; 493(2):177-92. PubMed ID: 16255029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.