These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1958730)

  • 1. Topological maps of protein sequences.
    Ferrán EA; Ferrara P
    Biol Cybern; 1991; 65(6):451-8. PubMed ID: 1958730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized neural maps of human protein sequences.
    Ferrán EA; Pflugfelder B; Ferrara P
    Protein Sci; 1994 Mar; 3(3):507-21. PubMed ID: 8019421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering proteins into families using artificial neural networks.
    Ferrán EA; Ferrara P
    Comput Appl Biosci; 1992 Feb; 8(1):39-44. PubMed ID: 1314686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein classification using neural networks.
    Ferrán EA; Ferrara P; Pflugfelder B
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():127-35. PubMed ID: 7584328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid method to cluster protein sequences based on statistics and artificial neural networks.
    Ferrán EA; Pflugfelder B
    Comput Appl Biosci; 1993 Dec; 9(6):671-80. PubMed ID: 8143153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kohonen map as a visualization tool for the analysis of protein sequences: multiple alignments, domains and segments of secondary structures.
    Hanke J; Reich JG
    Comput Appl Biosci; 1996 Dec; 12(6):447-54. PubMed ID: 9021261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning can be used to distinguish protein families and generate new proteins belonging to those families.
    Jin C; Cukier RI
    J Chem Phys; 2019 Nov; 151(17):175102. PubMed ID: 31703505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structural motifs of protein backbones are classified by self-organizing neural networks.
    Schuchhardt J; Schneider G; Reichelt J; Schomburg D; Wrede P
    Protein Eng; 1996 Oct; 9(10):833-42. PubMed ID: 8931122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural SCOP superfamily level classification using unsupervised machine learning.
    Angadi UB; Venkatesulu M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):601-8. PubMed ID: 21844638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of contact maps with neural networks and correlated mutations.
    Fariselli P; Olmea O; Valencia A; Casadio R
    Protein Eng; 2001 Nov; 14(11):835-43. PubMed ID: 11742102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural networks for molecular sequence classification.
    Wu C; Berry M; Fung YS; McLarty J
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():429-37. PubMed ID: 7584367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps.
    Schulz R; Reggia JA
    Neural Comput; 2004 Mar; 16(3):535-61. PubMed ID: 15006091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neuromorphological caudate-putaminal clustering of neostriate interneurons: Kohonen self-organizing maps and supervised artificial neural networks with multivariate analysis.
    Grbatinić I; Milošević N; Krstonošić B
    J Theor Biol; 2018 Feb; 438():96-115. PubMed ID: 29162445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Kohonen neural networks for the non-morphological distinction between glomerular and tubular renal disease.
    Van Biesen W; Sieben G; Lameire N; Vanholder R
    Nephrol Dial Transplant; 1998 Jan; 13(1):59-66. PubMed ID: 9481716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organizing hierarchic networks for pattern recognition in protein sequence.
    Hanke J; Beckmann G; Bork P; Reich JG
    Protein Sci; 1996 Jan; 5(1):72-82. PubMed ID: 8771198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bi-recursive neural network architecture for the prediction of protein coarse contact maps.
    Vullo A; Frasconi P
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():187-96. PubMed ID: 15838135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Back-propagation and counter-propagation neural networks for phylogenetic classification of ribosomal RNA sequences.
    Wu C; Shivakumar S
    Nucleic Acids Res; 1994 Oct; 22(20):4291-9. PubMed ID: 7937158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners.
    Pollastri G; Baldi P
    Bioinformatics; 2002; 18 Suppl 1():S62-70. PubMed ID: 12169532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.