BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19587373)

  • 1. A novel binding site for ADAMTS13 constitutively exposed on the surface of globular VWF.
    Zanardelli S; Chion AC; Groot E; Lenting PJ; McKinnon TA; Laffan MA; Tseng M; Lane DA
    Blood; 2009 Sep; 114(13):2819-28. PubMed ID: 19587373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of von Willebrand factor scissile bond cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13).
    Xiang Y; de Groot R; Crawley JT; Lane DA
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11602-7. PubMed ID: 21705658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAMTS13 substrate recognition of von Willebrand factor A2 domain.
    Zanardelli S; Crawley JT; Chion CK; Lam JK; Preston RJ; Lane DA
    J Biol Chem; 2006 Jan; 281(3):1555-63. PubMed ID: 16221672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous exposure of sites in von Willebrand factor for glycoprotein Ib binding and ADAMTS13 cleavage: studies with ristocetin.
    Chen J; Ling M; Fu X; López JA; Chung DW
    Arterioscler Thromb Vasc Biol; 2012 Nov; 32(11):2625-30. PubMed ID: 22922961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of the disintegrin-like domain in ADAMTS13 function.
    de Groot R; Bardhan A; Ramroop N; Lane DA; Crawley JT
    Blood; 2009 May; 113(22):5609-16. PubMed ID: 19234142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive contacts between ADAMTS13 exosites and von Willebrand factor domain A2 contribute to substrate specificity.
    Gao W; Anderson PJ; Sadler JE
    Blood; 2008 Sep; 112(5):1713-9. PubMed ID: 18492952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-linked glycan stabilization of the VWF A2 domain.
    Lynch CJ; Lane DA
    Blood; 2016 Mar; 127(13):1711-8. PubMed ID: 26773038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under flow conditions.
    Tao Z; Peng Y; Nolasco L; Cal S; Lopez-Otin C; Li R; Moake JL; López JA; Dong JF
    Blood; 2005 Dec; 106(13):4139-45. PubMed ID: 16141351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow.
    Zhang P; Pan W; Rux AH; Sachais BS; Zheng XL
    Blood; 2007 Sep; 110(6):1887-94. PubMed ID: 17540842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombospondin-1 and ADAMTS13 competitively bind to VWF A2 and A3 domains in vitro.
    Wang A; Liu F; Dong N; Ma Z; Zhang J; Su J; Zhao Y; Ruan C
    Thromb Res; 2010 Oct; 126(4):e260-5. PubMed ID: 20705333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the "minimal" structure of a functional ADAMTS13 by mutagenesis and small-angle X-ray scattering.
    Zhu J; Muia J; Gupta G; Westfield LA; Vanhoorelbeke K; Tolia NH; Sadler JE
    Blood; 2019 Apr; 133(17):1909-1918. PubMed ID: 30692120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13.
    Zheng X; Nishio K; Majerus EM; Sadler JE
    J Biol Chem; 2003 Aug; 278(32):30136-41. PubMed ID: 12791682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor.
    Akiyama M; Takeda S; Kokame K; Takagi J; Miyata T
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19274-9. PubMed ID: 19880749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling ADAMTS13-von Willebrand factor interaction: Implications for oxidative stress-related cardiovascular diseases and type 2A von Willebrand disease.
    Pozzi N; Lancellotti S; De Cristofaro R; De Filippis V
    Biophys Chem; 2012 Jan; 160(1):1-11. PubMed ID: 21937160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF.
    Pos W; Crawley JT; Fijnheer R; Voorberg J; Lane DA; Luken BM
    Blood; 2010 Feb; 115(8):1640-9. PubMed ID: 20032502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues Arg(659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor.
    Jin SY; Skipwith CG; Zheng XL
    Blood; 2010 Mar; 115(11):2300-10. PubMed ID: 20075158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mapping of the chloride-binding site in von Willebrand factor (VWF): energetics and conformational effects on the VWF/ADAMTS-13 interaction.
    De Cristofaro R; Peyvandi F; Baronciani L; Palla R; Lavoretano S; Lombardi R; Di Stasio E; Federici AB; Mannucci PM
    J Biol Chem; 2006 Oct; 281(41):30400-11. PubMed ID: 16899464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of VWF A2 domain stability and ADAMTS13 access to the scissile bond of full-length VWF.
    Lynch CJ; Lane DA; Luken BM
    Blood; 2014 Apr; 123(16):2585-92. PubMed ID: 24558203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational activation of ADAMTS13.
    South K; Luken BM; Crawley JT; Phillips R; Thomas M; Collins RF; Deforche L; Vanhoorelbeke K; Lane DA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18578-83. PubMed ID: 25512499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc and calcium ions cooperatively modulate ADAMTS13 activity.
    Anderson PJ; Kokame K; Sadler JE
    J Biol Chem; 2006 Jan; 281(2):850-7. PubMed ID: 16286459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.