These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19587752)

  • 1. Evolutionary biology: Microbes exploit groundhog day.
    Cooper TF
    Nature; 2009 Jul; 460(7252):181. PubMed ID: 19587752
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive prediction of environmental changes by microorganisms.
    Mitchell A; Romano GH; Groisman B; Yona A; Dekel E; Kupiec M; Dahan O; Pilpel Y
    Nature; 2009 Jul; 460(7252):220-4. PubMed ID: 19536156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting sugars and shifting paradigms.
    Siegal ML
    PLoS Biol; 2015 Feb; 13(2):e1002068. PubMed ID: 25688600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.
    Guimarães PM; Teixeira JA; Domingues L
    Biotechnol Lett; 2008 Nov; 30(11):1953-8. PubMed ID: 18575804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome analysis between original and evolved recombinant lactose-consuming Saccharomyces cerevisiae strains.
    Guimarães PM; Le Berre V; Sokol S; François J; Teixeira JA; Domingues L
    Biotechnol J; 2008 Dec; 3(12):1591-7. PubMed ID: 19039778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous ethanol fermentation of lactose by a recombinant flocculating Saccharomyces cerevisiae strain.
    Domingues L; Dantas MM; Lima N; Teixeira JA
    Biotechnol Bioeng; 1999 Sep; 64(6):692-7. PubMed ID: 10417218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011.
    Vincent M; Pometto AL; van Leeuwen JH
    J Microbiol Biotechnol; 2011 Jul; 21(7):703-10. PubMed ID: 21791956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.
    Jin Y; Parashar A; Mason B; Bressler DC
    Bioresour Technol; 2016 Dec; 221():616-624. PubMed ID: 27693727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.
    Qureshi AS; Zhang J; Bao J
    Bioresour Technol; 2015; 189():399-404. PubMed ID: 25930238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli.
    Alterthum F; Ingram LO
    Appl Environ Microbiol; 1989 Aug; 55(8):1943-8. PubMed ID: 2675762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Experimental Evolution - a proving ground for evolutionary theory and a tool for discovery.
    McDonald MJ
    EMBO Rep; 2019 Aug; 20(8):e46992. PubMed ID: 31338963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation of whey and starch by transformed Saccharomyces cerevisiae cells.
    Compagno C; Porro D; Smeraldi C; Ranzi BM
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):822-5. PubMed ID: 7576548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.
    Liu JJ; Zhang GC; Oh EJ; Pathanibul P; Turner TL; Jin YS
    J Biotechnol; 2016 Sep; 234():99-104. PubMed ID: 27457698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues.
    Gu H; Zhang J; Bao J
    Bioresour Technol; 2014 Apr; 157():6-13. PubMed ID: 24518544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.
    Pasotti L; Zucca S; Casanova M; Micoli G; Cusella De Angelis MG; Magni P
    BMC Biotechnol; 2017 Jun; 17(1):48. PubMed ID: 28577554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of lactose fermentation using a recombinant Saccharomyces cerevisiae strain.
    Jurascík M; Guimarães P; Klein J; Domingues L; Teixeira J; Markos J
    Biotechnol Bioeng; 2006 Aug; 94(6):1147-54. PubMed ID: 16615146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary biology. A boost for "adaptive" mutation.
    Culotta E
    Science; 1994 Jul; 265(5170):318-9. PubMed ID: 8023153
    [No Abstract]   [Full Text] [Related]  

  • 18. A recombinant Saccharomyces cerevisiae strain for efficient conversion of lactose in salted and unsalted cheese whey into ethanol.
    Tahoun MK; el-Nemr TM; Shata OH
    Nahrung; 2002 Oct; 46(5):321-6. PubMed ID: 12428446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11.
    Yasuda M; Miura A; Shiragami T; Matsumoto J; Kamei I; Ishii Y; Ohta K
    J Biosci Bioeng; 2012 Aug; 114(2):188-92. PubMed ID: 22595344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biochemical activity of strains of the haemolytic variant of Escherichia coli isolated from biological material (author's transl)].
    Stréglová A
    Cesk Epidemiol Mikrobiol Imunol; 1979 Mar; 28(2):120-1. PubMed ID: 156077
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.