These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19588012)

  • 21. Influence of the close sphere interaction on the surface plasmon resonance absorption peak.
    Pecharromán C
    Phys Chem Chem Phys; 2009 Jul; 11(28):5922-9. PubMed ID: 19588014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SERS enhancement by aggregated Au colloids: effect of particle size.
    Bell SE; McCourt MR
    Phys Chem Chem Phys; 2009 Sep; 11(34):7455-62. PubMed ID: 19690719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interface matching method for solving surface plasmon modes with damping in plasmonic crystals.
    Chern RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):017701. PubMed ID: 19257169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-sensitive reflection-mode EXAFS from layered sample systems: the influence of surface and interface roughness.
    Keil P; Lützenkirchen-Hecht D
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):443-54. PubMed ID: 19535856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon damping quantified with an electron nanoprobe.
    Bosman M; Ye E; Tan SF; Nijhuis CA; Yang JK; Marty R; Mlayah A; Arbouet A; Girard C; Han MY
    Sci Rep; 2013; 3():1312. PubMed ID: 23425921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres.
    Ausman LK; Schatz GC
    J Chem Phys; 2009 Aug; 131(8):084708. PubMed ID: 19725622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of radiation damping on the spectral response of plasmonic components.
    Kats MA; Yu N; Genevet P; Gaburro Z; Capasso F
    Opt Express; 2011 Oct; 19(22):21748-53. PubMed ID: 22109025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal electrophoresis of gold nanoparticles: a real time approach.
    Patra HK; GuhaSarkar D; Dasgupta AK
    Anal Chim Acta; 2009 Sep; 649(1):128-34. PubMed ID: 19664473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy.
    Lin J; Chen R; Feng S; Li Y; Huang Z; Xie S; Yu Y; Cheng M; Zeng H
    Biosens Bioelectron; 2009 Oct; 25(2):388-94. PubMed ID: 19699079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness.
    Furuta T; Nakajima A; Sakai M; Isobe T; Kameshima Y; Okada K
    Langmuir; 2009 May; 25(10):5417-20. PubMed ID: 19374439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots.
    Guerrini L; Izquierdo-Lorenzo I; Garcia-Ramos JV; Domingo C; Sanchez-Cortes S
    Phys Chem Chem Phys; 2009 Sep; 11(34):7363-71. PubMed ID: 19690707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm.
    Araújo MG; Taboada JM; Rivero J; Solís DM; Obelleiro F
    Opt Lett; 2012 Feb; 37(3):416-8. PubMed ID: 22297371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures.
    Chang DE; Thompson JD; Park H; Vuletić V; Zibrov AS; Zoller P; Lukin MD
    Phys Rev Lett; 2009 Sep; 103(12):123004. PubMed ID: 19792431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inclusion of supported gold nanoparticles into their semiconductor support.
    Lau M; Ziefuss A; Komossa T; Barcikowski S
    Phys Chem Chem Phys; 2015 Nov; 17(43):29311-8. PubMed ID: 26467473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using plasmonic heating of gold nanoparticles to generate local SER(R)S-active TiO2 spots.
    Alessandri I; Depero LE
    Chem Commun (Camb); 2009 May; (17):2359-61. PubMed ID: 19377685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A note on the effects of roughness on acoustic propagation past curved rough surfaces.
    Whelan A; Chambers JP
    J Acoust Soc Am; 2009 Jun; 125(6):EL231-5. PubMed ID: 19507927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light scattering on Chebyshev particles of higher order.
    Rother T; Schmidt K; Wauer J; Shcherbakov V; Gayet JF
    Appl Opt; 2006 Aug; 45(23):6030-7. PubMed ID: 16926892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.