These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19588115)

  • 61. Clone-based functional genomics.
    Bleys A; Karimi M; Hilson P
    Methods Mol Biol; 2009; 553():141-77. PubMed ID: 19588105
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Method for Ultrarapid High-Content Screening for Biologically Active Chemicals Using Plant Pollen.
    Chuprov-Netochin R; Marusich E; Neskorodov Y; Mishutkina Y; Volynchuk P; Ivanenkov Y; Touraev A; Leonov S; Palme K
    Methods Mol Biol; 2018; 1795():27-37. PubMed ID: 29846916
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Early stage hit triage for plant chemical genetic screens and target site identification.
    Walsh TA
    Methods Mol Biol; 2014; 1056():191-9. PubMed ID: 24306874
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Small molecules for dissecting endomembrane trafficking: a cross-systems view.
    Mishev K; Dejonghe W; Russinova E
    Chem Biol; 2013 Apr; 20(4):475-86. PubMed ID: 23601636
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Applying the logic of genetic interaction to discover small molecules that functionally interact with human disease alleles.
    Brettman AD; Tan PH; Tran K; Shaw SY
    Methods Mol Biol; 2015; 1263():15-27. PubMed ID: 25618333
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria.
    French S; Ellis MJ; Coutts BE; Brown ED
    Curr Opin Microbiol; 2017 Oct; 39():42-47. PubMed ID: 28957731
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Engineering digitizer circuits for chemical and genetic screens in human cells.
    Wong NM; Frias E; Sigoillot FD; Letendre JH; Hild M; Wong WW
    Nat Commun; 2021 Oct; 12(1):6150. PubMed ID: 34686672
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Expanding medicinal chemistry space.
    Barker A; Kettle JG; Nowak T; Pease JE
    Drug Discov Today; 2013 Mar; 18(5-6):298-304. PubMed ID: 23117010
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of Chemical Inducers of the Phosphate-Starvation Signaling Pathway in A. thaliana Using Chemical Genetics.
    Bonnot C; Nussaume L; Desnos T
    Methods Mol Biol; 2018; 1795():65-84. PubMed ID: 29846919
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemogenomic strategies to expand the bioactive chemical space.
    Jacoby E; Mozzarelli A
    Curr Med Chem; 2009; 16(33):4374-81. PubMed ID: 19835567
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical genomics for studying parasite gene function and interaction.
    Li J; Yuan J; Cheng KC; Inglese J; Su XZ
    Trends Parasitol; 2013 Dec; 29(12):603-11. PubMed ID: 24215777
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Chemical Genetic Screening Procedure for
    Bjornson M; Song X; Dandekar A; Franz A; Drakakaki G; Dehesh K
    Bio Protoc; 2015 Jul; 5(13):. PubMed ID: 27446980
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ligand screening using fluorescence thermal shift analysis (FTS).
    Luan CH; Light SH; Dunne SF; Anderson WF
    Methods Mol Biol; 2014; 1140():263-89. PubMed ID: 24590724
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Target identification strategies in plant chemical biology.
    Dejonghe W; Russinova E
    Front Plant Sci; 2014; 5():352. PubMed ID: 25104953
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Forward & reverse chemical genetics using SPOS-based combinatorial chemistry.
    Thorpe DS
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):623-47. PubMed ID: 14683491
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strategies and future trends to identify the mode of action of phytotoxic compounds.
    Tresch S
    Plant Sci; 2013 Nov; 212():60-71. PubMed ID: 24094055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chemical genetics: elucidating biological systems with small-molecule compounds.
    Kawasumi M; Nghiem P
    J Invest Dermatol; 2007 Jul; 127(7):1577-84. PubMed ID: 17568801
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Discovery of new small molecules and targets towards angiogenesis via chemical genomics approach.
    Kwon HJ
    Curr Drug Targets; 2006 Apr; 7(4):397-405. PubMed ID: 16611028
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of cellular pathways affected by Sortin2, a synthetic compound that affects protein targeting to the vacuole in Saccharomyces cerevisiae.
    Norambuena L; Zouhar J; Hicks GR; Raikhel NV
    BMC Chem Biol; 2008 Jan; 8():1. PubMed ID: 18179719
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Using small molecules to dissect mechanisms of microbial pathogenesis.
    Puri AW; Bogyo M
    ACS Chem Biol; 2009 Aug; 4(8):603-16. PubMed ID: 19606820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.