BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19588459)

  • 1. Components of variance in transcriptomics based on electrophoretic separation of cDNA fragments (cDNA-AFLP).
    Weiberg A; Karlovsky P
    Electrophoresis; 2009 Jul; 30(14):2549-57. PubMed ID: 19588459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.
    Weiberg A; Pöhler D; Morgenstern B; Karlovsky P
    BMC Genomics; 2008 Oct; 9():480. PubMed ID: 18851732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFLP-based transcript profiling.
    Vos P; Stanssens P
    Curr Protoc Mol Biol; 2002 Feb; Chapter 25():Unit 25B.5. PubMed ID: 18265312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome.
    Volkmuth W; Turk S; Shapiro A; Fang Y; Kiegle E; van Haaren M; Donson J
    OMICS; 2003; 7(2):143-59. PubMed ID: 14506844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary electrophoresis with dual laser detection in separation of amplified fragment length polymorphism fragments.
    Stefanowicz-Hajduk J; Filipowicz N; Kosinski I; Ochocka JR
    J Sep Sci; 2009 Oct; 32(20):3539-43. PubMed ID: 19764050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cDNA-AFLP-based transcript profiling for genome-wide expression analysis of jasmonate-treated plants and plant cultures.
    Colling J; Pollier J; Makunga NP; Goossens A
    Methods Mol Biol; 2013; 1011():287-303. PubMed ID: 23616005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust ordered mRNA differential display: an improved method for global gene expression profiling.
    Liu H; Hu J; Pan L; Wang S; He Y; Ding Y
    Biotechniques; 2011 Oct; 51(4):271-2, 274-5. PubMed ID: 21988694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis.
    Vuylsteke M; Peleman JD; van Eijk MJ
    Nat Protoc; 2007; 2(6):1399-413. PubMed ID: 17545977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A silver-staining cDNA-AFLP protocol suitable for transcript profiling in the latex of Hevea brasiliensis (para rubber tree).
    Xiao X; Li H; Tang C
    Mol Biotechnol; 2009 May; 42(1):91-9. PubMed ID: 19101826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microarray-based method for the parallel analysis of genotypes and expression profiles of wood-forming tissues in Eucalyptus grandis.
    Barros E; van Staden CA; Lezar S
    BMC Biotechnol; 2009 May; 9():51. PubMed ID: 19473481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model.
    Paris R; Dondini L; Zannini G; Bastia D; Marasco E; Gualdi V; Rizzi V; Piffanelli P; Mantovani V; Tartarini S
    Planta; 2012 May; 235(5):1065-80. PubMed ID: 22270558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic transcriptomics in silico: optimizing cDNA-AFLP efficiency.
    Stölting KN; Gort G; Wüst C; Wilson AB
    BMC Genomics; 2009 Nov; 10():565. PubMed ID: 19948029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP.
    Qin L; Prins P; Jones JT; Popeijus H; Smant G; Bakker J; Helder J
    Nucleic Acids Res; 2001 Apr; 29(7):1616-22. PubMed ID: 11266565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of an efficient restriction enzyme combination for cDNA-AFLP analysis in Festuca mairei and evaluation of the identity of transcript-derived fragments.
    Wang JP; Bughrara SS
    Mol Biotechnol; 2005 Mar; 29(3):211-20. PubMed ID: 15767698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cDNA-amplified fragment length polymorphism to study the transcriptional responses of Lactobacillus rhamnosus growing in cheese-like medium.
    Bove CG; Lazzi C; Bernini V; Bottari B; Neviani E; Gatti M
    J Appl Microbiol; 2011 Oct; 111(4):855-64. PubMed ID: 21762473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae.
    Reijans M; Lascaris R; Groeneger AO; Wittenberg A; Wesselink E; van Oeveren J; de Wit E; Boorsma A; Voetdijk B; van der Spek H; Grivell LA; Simons G
    Genomics; 2003 Dec; 82(6):606-18. PubMed ID: 14611802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver stained polyacrylamide gels and fluorescence-based automated capillary electrophoresis for detection of amplified fragment length polymorphism patterns obtained from white-rot fungi in the genus Trametes.
    Dresler-Nurmi A; Terefework Z; Kaijalainen1 S; Lindström K; Hatakka A
    J Microbiol Methods; 2000 Jul; 41(2):161-72. PubMed ID: 10889313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between the fingerprints generated from total RNA and poly-A RNA using a modified procedure of cDNA-AFLP and silver staining.
    Guo JR; Schnieder F; Verreet JA
    Biotechnol Lett; 2006 Feb; 28(4):267-70. PubMed ID: 16555011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology.
    Botton A; Galla G; Conesa A; Bachem C; Ramina A; Barcaccia G
    BMC Genomics; 2008 Jul; 9():347. PubMed ID: 18652646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of genes related to abscisic acid production in Botrytis cinerea TB-3-H8 by cDNA-AFLP.
    Gong T; Shu D; Zhao M; Zhong J; Deng HY; Tan H
    J Basic Microbiol; 2014 Mar; 54(3):204-14. PubMed ID: 23456640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.