BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 19588931)

  • 1. Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body.
    Skogerson K; Runnebaum R; Wohlgemuth G; de Ropp J; Heymann H; Fiehn O
    J Agric Food Chem; 2009 Aug; 57(15):6899-907. PubMed ID: 19588931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics.
    van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP
    Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry in the analysis of grape and wine proteins.
    Flamini R; De Rosso M
    Expert Rev Proteomics; 2006 Jun; 3(3):321-31. PubMed ID: 16771704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS).
    Chan EC; Koh PK; Mal M; Cheah PY; Eu KW; Backshall A; Cavill R; Nicholson JK; Keun HC
    J Proteome Res; 2009 Jan; 8(1):352-61. PubMed ID: 19063642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose.
    Berna AZ; Trowell S; Clifford D; Cynkar W; Cozzolino D
    Anal Chim Acta; 2009 Aug; 648(2):146-52. PubMed ID: 19646576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas.
    Son HS; Kim KM; van den Berg F; Hwang GS; Park WM; Lee CH; Hong YS
    J Agric Food Chem; 2008 Sep; 56(17):8007-16. PubMed ID: 18707121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy.
    Fancy SA; Beckonert O; Darbon G; Yabsley W; Walley R; Baker D; Perkins GL; Pullen FS; Rumpel K
    Rapid Commun Mass Spectrom; 2006; 20(15):2271-80. PubMed ID: 16810707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validated modeling for German white wine varietal authentication based on headspace solid-phase microextraction online coupled with gas chromatography mass spectrometry fingerprinting.
    Springer AE; Riedl J; Esslinger S; Roth T; Glomb MA; Fauhl-Hassek C
    J Agric Food Chem; 2014 Jul; 62(28):6844-51. PubMed ID: 25000414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of fermentative behaviors of lactic acid bacteria in grape wines through 1H NMR- and GC-based metabolic profiling.
    Lee JE; Hong YS; Lee CH
    J Agric Food Chem; 2009 Jun; 57(11):4810-7. PubMed ID: 19441818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and (1)H NMR spectroscopy.
    Law WS; Huang PY; Ong ES; Ong CN; Li SF; Pasikanti KK; Chan EC
    Rapid Commun Mass Spectrom; 2008 Aug; 22(16):2436-46. PubMed ID: 18634125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of volatile profiles of fermenting grape must by headspace solid-phase dynamic extraction coupled with gas chromatography-mass spectrometry (HS-SPDE GC-MS): novel application to investigate problem fermentations.
    Malherbe S; Watts V; Nieuwoudt HH; Bauer FF; du Toit M
    J Agric Food Chem; 2009 Jun; 57(12):5161-6. PubMed ID: 19469561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon.
    Biais B; Allwood JW; Deborde C; Xu Y; Maucourt M; Beauvoit B; Dunn WB; Jacob D; Goodacre R; Rolin D; Moing A
    Anal Chem; 2009 Apr; 81(8):2884-94. PubMed ID: 19298059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics.
    Fudge AL; Wilkinson KL; Ristic R; Cozzolino D
    J Agric Food Chem; 2012 Jan; 60(1):52-9. PubMed ID: 22129211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-trap versus time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine.
    Simó C; Moreno-Arribas MV; Cifuentes A
    J Chromatogr A; 2008 Jun; 1195(1-2):150-6. PubMed ID: 18508068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data.
    Welke JE; Manfroi V; Zanus M; Lazzarotto M; Alcaraz Zini C
    Food Chem; 2013 Dec; 141(4):3897-905. PubMed ID: 23993563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study.
    Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS
    Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards reliable estimation of an "electronic tongue" predictive ability from PLS regression models in wine analysis.
    Kirsanov D; Mednova O; Vietoris V; Kilmartin PA; Legin A
    Talanta; 2012 Feb; 90():109-16. PubMed ID: 22340124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H NMR-based metabonomics for the classification of Greek wines according to variety, region, and vintage. Comparison with HPLC data.
    Anastasiadi M; Zira A; Magiatis P; Haroutounian SA; Skaltsounis AL; Mikros E
    J Agric Food Chem; 2009 Dec; 57(23):11067-74. PubMed ID: 19904930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety.
    Vaclavik L; Lacina O; Hajslova J; Zweigenbaum J
    Anal Chim Acta; 2011 Jan; 685(1):45-51. PubMed ID: 21168550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. III. Relative characterization of Canadian and Czech ice wines using self-organizing maps.
    Giraudel JL; Setkova L; Pawliszyn J; Montury M
    J Chromatogr A; 2007 Apr; 1147(2):241-53. PubMed ID: 17346718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.