These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19588974)

  • 1. Optical activity and chiral memory of thiol-capped CdTe nanocrystals.
    Nakashima T; Kobayashi Y; Kawai T
    J Am Chem Soc; 2009 Aug; 131(30):10342-3. PubMed ID: 19588974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions.
    Guo J; Yang W; Wang C
    J Phys Chem B; 2005 Sep; 109(37):17467-73. PubMed ID: 16853233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of highly stable dihydrolipoic acid capped water-soluble CdTe nanocrystals.
    Fang Z; Liu L; Xu L; Yin X; Zhong X
    Nanotechnology; 2008 Jun; 19(23):235603. PubMed ID: 21825798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the optical properties of CdTe nanocrystals by selective exchange of Te with thiolate: effect of organic ligands on the formation of core-shell structures.
    Tsuruoka T; Takahashi R; Akamatsu K; Nawafune H
    Phys Chem Chem Phys; 2008 Apr; 10(16):2221-6. PubMed ID: 18404229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O.
    Schneider R; Weigert F; Lesnyak V; Leubner S; Lorenz T; Behnke T; Dubavik A; Joswig JO; Resch-Genger U; Gaponik N; Eychmüller A
    Phys Chem Chem Phys; 2016 Jul; 18(28):19083-92. PubMed ID: 27357335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CdSe Quantum Dots Functionalized with Chiral, Thiol-Free Carboxylic Acids: Unraveling Structural Requirements for Ligand-Induced Chirality.
    Varga K; Tannir S; Haynie BE; Leonard BM; Dzyuba SV; Kubelka J; Balaz M
    ACS Nano; 2017 Oct; 11(10):9846-9853. PubMed ID: 28956912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.
    Choi JK; Haynie BE; Tohgha U; Pap L; Elliott KW; Leonard BM; Dzyuba SV; Varga K; Kubelka J; Balaz M
    ACS Nano; 2016 Mar; 10(3):3809-15. PubMed ID: 26938741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynthesis racemization and place exchange reactions. Another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles.
    Qi H; Hegmann T
    J Am Chem Soc; 2008 Oct; 130(43):14201-6. PubMed ID: 18826312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure.
    Lin YC; Chou WC; Susha AS; Kershaw SV; Rogach AL
    Nanoscale; 2013 Apr; 5(8):3400-5. PubMed ID: 23471137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment.
    Shavel A; Gaponik N; Eychmüller A
    J Phys Chem B; 2006 Oct; 110(39):19280-4. PubMed ID: 17004780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of surface ligands on the optical activity of mercury sulfide nanoparticles.
    Kuno J; Kawai T; Nakashima T
    Nanoscale; 2017 Aug; 9(32):11590-11595. PubMed ID: 28770926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals.
    Leubner S; Hatami S; Esendemir N; Lorenz T; Joswig JO; Lesnyak V; Recknagel S; Gaponik N; Resch-Genger U; Eychmüller A
    Dalton Trans; 2013 Sep; 42(35):12733-40. PubMed ID: 23775524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence.
    He Y; Lu HT; Sai LM; Lai WY; Fan QL; Wang LH; Huang W
    J Phys Chem B; 2006 Jul; 110(27):13370-4. PubMed ID: 16821856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of oxygen on the fluorescence enhancement of fatty-acid-capped CdS nanocrystals.
    Wang C; Zhang H; Zhang J; Li M; Han K; Yang B
    J Colloid Interface Sci; 2006 Feb; 294(1):104-8. PubMed ID: 16112677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface effects on capped and uncapped nanocrystals.
    Bryant GW; Jaskolski W
    J Phys Chem B; 2005 Oct; 109(42):19650-6. PubMed ID: 16853541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band gap engineering of CdTe nanocrystals through chemical surface modification.
    Akamatsu K; Tsuruoka T; Nawafune H
    J Am Chem Soc; 2005 Feb; 127(6):1634-5. PubMed ID: 15700986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical observation of the photoinduced formation of alloyed ZnSe(S) nanocrystals.
    Osipovich NP; Shavel A; Poznyak SK; Gaponik N; Eychmüller A
    J Phys Chem B; 2006 Oct; 110(39):19233-7. PubMed ID: 17004774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioseparation and chiral induction in Ag
    Yoshida H; Ehara M; Priyakumar UD; Kawai T; Nakashima T
    Chem Sci; 2020 Jan; 11(9):2394-2400. PubMed ID: 34084402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol-capped CdTe nanocrystals: progress and perspectives of the related research fields.
    Gaponik N; Rogach AL
    Phys Chem Chem Phys; 2010 Aug; 12(31):8685-93. PubMed ID: 20544089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.