These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 19589070)
21. Role of the pathotype-specific ACRTS1 gene encoding a hydroxylase involved in the biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata. Izumi Y; Kamei E; Miyamoto Y; Ohtani K; Masunaka A; Fukumoto T; Gomi K; Tada Y; Ichimura K; Peever TL; Akimitsu K Phytopathology; 2012 Aug; 102(8):741-8. PubMed ID: 22779742 [TBL] [Abstract][Full Text] [Related]
22. The transcription regulator ACTR controls ACT-toxin biosynthesis and pathogenicity in the tangerine pathotype of Alternaria alternata. Li L; Ma H; Zheng F; Chen Y; Wang M; Jiao C; Li H; Gai Y Microbiol Res; 2021 Jul; 248():126747. PubMed ID: 33740671 [TBL] [Abstract][Full Text] [Related]
23. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Lev S; Hadar R; Amedeo P; Baker SE; Yoder OC; Horwitz BA Eukaryot Cell; 2005 Feb; 4(2):443-54. PubMed ID: 15701806 [TBL] [Abstract][Full Text] [Related]
24. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Wang M; Sun X; Yu D; Xu J; Chung K; Li H Sci Rep; 2016 Sep; 6():32437. PubMed ID: 27582273 [TBL] [Abstract][Full Text] [Related]
25. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen Alternaria alternata. Wu PC; Chen CW; Choo CYL; Chen YK; Yago JI; Chung KR Microbiol Res; 2020 Dec; 241():126566. PubMed ID: 33032167 [TBL] [Abstract][Full Text] [Related]
26. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Ito K; Tanaka T; Hatta R; Yamamoto M; Akimitsu K; Tsuge T Mol Microbiol; 2004 Apr; 52(2):399-411. PubMed ID: 15066029 [TBL] [Abstract][Full Text] [Related]
27. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Chen LH; Yang SL; Chung KR Microbiology (Reading); 2014 May; 160(Pt 5):970-979. PubMed ID: 24586035 [TBL] [Abstract][Full Text] [Related]
28. A G alpha subunit gene is essential for conidiation and potassium efflux but dispensable for pathogenicity of Alternaria alternata on citrus. Wang NY; Lin CH; Chung KR Curr Genet; 2010 Feb; 56(1):43-51. PubMed ID: 19949798 [TBL] [Abstract][Full Text] [Related]
29. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. Vélëz H; Glassbrook NJ; Daub ME FEMS Microbiol Lett; 2008 Aug; 285(1):122-9. PubMed ID: 18549402 [TBL] [Abstract][Full Text] [Related]
30. Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata. Tsai HC; Yang SL; Chung KR World J Microbiol Biotechnol; 2013 Feb; 29(2):289-300. PubMed ID: 23054702 [TBL] [Abstract][Full Text] [Related]
31. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. Chen LH; Tsai HC; Yu PL; Chung KR PLoS One; 2017; 12(1):e0169103. PubMed ID: 28060864 [TBL] [Abstract][Full Text] [Related]
32. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1. Yu PL; Chen LH; Chung KR PLoS One; 2016; 11(2):e0149153. PubMed ID: 26863027 [TBL] [Abstract][Full Text] [Related]
33. The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Yago JI; Lin CH; Chung KR Mol Plant Pathol; 2011 Sep; 12(7):653-65. PubMed ID: 21726368 [TBL] [Abstract][Full Text] [Related]
34. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Molina L; Kahmann R Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735 [TBL] [Abstract][Full Text] [Related]
35. G protein signaling mediates developmental processes and pathogenesis of Alternaria alternata. Yamagishi D; Otani H; Kodama M Mol Plant Microbe Interact; 2006 Nov; 19(11):1280-8. PubMed ID: 17073310 [TBL] [Abstract][Full Text] [Related]
36. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. Chung KR Scientifica (Cairo); 2012; 2012():635431. PubMed ID: 24278721 [TBL] [Abstract][Full Text] [Related]
37. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1. Temme N; Tudzynski P Mol Plant Microbe Interact; 2009 Aug; 22(8):987-98. PubMed ID: 19589074 [TBL] [Abstract][Full Text] [Related]
38. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Segmüller N; Kokkelink L; Giesbert S; Odinius D; van Kan J; Tudzynski P Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644 [TBL] [Abstract][Full Text] [Related]
39. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Johnson RD; Johnson L; Itoh Y; Kodama M; Otani H; Kohmoto K Mol Plant Microbe Interact; 2000 Jul; 13(7):742-53. PubMed ID: 10875335 [TBL] [Abstract][Full Text] [Related]
40. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Al-Saadi A; Reddy JD; Duan YP; Brunings AM; Yuan Q; Gabriel DW Mol Plant Microbe Interact; 2007 Aug; 20(8):934-43. PubMed ID: 17722697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]