These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 19589123)
1. Enhanced gene expression and reduced toxicity in mice using polyplexes of low-molecular-weight poly(ethylene imine) for pulmonary gene delivery. Kleemann E; Jekel N; Dailey LA; Roesler S; Fink L; Weissmann N; Schermuly R; Gessler T; Schmehl T; Roberts CJ; Seeger W; Kissel T J Drug Target; 2009 Sep; 17(8):638-51. PubMed ID: 19589123 [TBL] [Abstract][Full Text] [Related]
2. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Merdan T; Kunath K; Petersen H; Bakowsky U; Voigt KH; Kopecek J; Kissel T Bioconjug Chem; 2005; 16(4):785-92. PubMed ID: 16029019 [TBL] [Abstract][Full Text] [Related]
3. Delivery of messenger RNA using poly(ethylene imine)-poly(ethylene glycol)-copolymer blends for polyplex formation: biophysical characterization and in vitro transfection properties. Debus H; Baumhof P; Probst J; Kissel T J Control Release; 2010 Dec; 148(3):334-43. PubMed ID: 20854856 [TBL] [Abstract][Full Text] [Related]
4. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
5. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties. Zhong Z; Feijen J; Lok MC; Hennink WE; Christensen LV; Yockman JW; Kim YH; Kim SW Biomacromolecules; 2005; 6(6):3440-8. PubMed ID: 16283777 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel superior polycationic vectors for gene delivery by high-throughput synthesis and screening of a combinatorial library. Thomas M; Lu JJ; Zhang C; Chen J; Klibanov AM Pharm Res; 2007 Aug; 24(8):1564-71. PubMed ID: 17385014 [TBL] [Abstract][Full Text] [Related]
8. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Mao S; Neu M; Germershaus O; Merkel O; Sitterberg J; Bakowsky U; Kissel T Bioconjug Chem; 2006; 17(5):1209-18. PubMed ID: 16984130 [TBL] [Abstract][Full Text] [Related]
9. Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. Beyerle A; Braun A; Merkel O; Koch F; Kissel T; Stoeger T J Control Release; 2011 Apr; 151(1):51-6. PubMed ID: 21223987 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility and efficacy of oligomaltose-grafted poly(ethylene imine)s (OM-PEIs) for in vivo gene delivery. Gutsch D; Appelhans D; Höbel S; Voit B; Aigner A Mol Pharm; 2013 Dec; 10(12):4666-75. PubMed ID: 24175860 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors. Zhang Z; Yang C; Duan Y; Wang Y; Liu J; Wang L; Kong D Acta Biomater; 2010 Jul; 6(7):2650-7. PubMed ID: 20114089 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight. de Wolf HK; de Raad M; Snel C; van Steenbergen MJ; Fens MH; Storm G; Hennink WE Pharm Res; 2007 Aug; 24(8):1572-80. PubMed ID: 17435970 [TBL] [Abstract][Full Text] [Related]
13. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593 [TBL] [Abstract][Full Text] [Related]
14. Construction of a star-shaped copolymer as a vector for FGF receptor-mediated gene delivery in vitro and in vivo. Li D; Ping Y; Xu F; Yu H; Pan H; Huang H; Wang Q; Tang G; Li J Biomacromolecules; 2010 Sep; 11(9):2221-9. PubMed ID: 20704346 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Liang B; He ML; Xiao ZP; Li Y; Chan CY; Kung HF; Shuai XT; Peng Y Biochem Biophys Res Commun; 2008 Mar; 367(4):874-80. PubMed ID: 18201560 [TBL] [Abstract][Full Text] [Related]
16. Novel poly(ethylene imine) biscarbamate conjugate as an efficient and nontoxic gene delivery system. Xu S; Chen M; Yao Y; Zhang Z; Jin T; Huang Y; Zhu H J Control Release; 2008 Aug; 130(1):64-8. PubMed ID: 18582980 [TBL] [Abstract][Full Text] [Related]
17. The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Yao H; Ng SS; Tucker WO; Tsang YK; Man K; Wang XM; Chow BK; Kung HF; Tang GP; Lin MC Biomaterials; 2009 Oct; 30(29):5793-803. PubMed ID: 19615741 [TBL] [Abstract][Full Text] [Related]
18. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Kleemann E; Neu M; Jekel N; Fink L; Schmehl T; Gessler T; Seeger W; Kissel T J Control Release; 2005 Dec; 109(1-3):299-316. PubMed ID: 16298009 [TBL] [Abstract][Full Text] [Related]
19. Modified polyethylenimines as non viral gene delivery systems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency. Dailey LA; Kleemann E; Merdan T; Petersen H; Schmehl T; Gessler T; Hänze J; Seeger W; Kissel T J Control Release; 2004 Dec; 100(3):425-36. PubMed ID: 15567507 [TBL] [Abstract][Full Text] [Related]
20. PEG conjugation of a near-infrared fluorescent probe for noninvasive dual imaging of lung deposition and gene expression by pulmonary gene delivery. Okuda T; Kobayashi Y; Yanamoto S; Okamoto H J Drug Target; 2012 Nov; 20(9):801-12. PubMed ID: 23009266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]