These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19589125)

  • 21. Photodynamic therapy - hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity.
    Plenagl N; Duse L; Seitz BS; Goergen N; Pinnapireddy SR; Jedelska J; Brüßler J; Bakowsky U
    Drug Deliv; 2019 Dec; 26(1):23-33. PubMed ID: 30691327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticles as vehicles for delivery of photodynamic therapy agents.
    Bechet D; Couleaud P; Frochot C; Viriot ML; Guillemin F; Barberi-Heyob M
    Trends Biotechnol; 2008 Nov; 26(11):612-21. PubMed ID: 18804298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening of nanoparticulate delivery systems for the photodetection of cancer in a simple and cost-effective model.
    Zeisser-Labouèbe M; Delie F; Gurny R; Lange N
    Nanomedicine (Lond); 2009 Feb; 4(2):135-43. PubMed ID: 19193181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histomorphological changes in murine fibrosarcoma after hypericin-based photodynamic therapy.
    Bobrov N; Cavarga I; Longauer F; Rybárová S; Fedorocko P; Brezáni P; Miskovský P; Mirossay L; Stubna J
    Phytomedicine; 2007 Feb; 14(2-3):172-8. PubMed ID: 17095201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of aggregation on the biodistribution of hypericin.
    Van De Putte M; Roskams T; Bormans G; Verbruggen A; De Witte PA
    Int J Oncol; 2006 Mar; 28(3):655-60. PubMed ID: 16465370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide p160-coated silica nanoparticles applied in photodynamic therapy.
    Yang Y; Wang A; Jia Y; Brezesinski G; Dai L; Zhao J; Li J
    Chem Asian J; 2014 Aug; 9(8):2126-31. PubMed ID: 24895152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced effect of photodynamic therapy in ovarian cancer using a nanoparticle drug delivery system.
    Li Z; Sun L; Lu Z; Su X; Yang Q; Qu X; Li L; Song K; Kong B
    Int J Oncol; 2015 Sep; 47(3):1070-6. PubMed ID: 26165140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents.
    Zhang R; Wu C; Tong L; Tang B; Xu QH
    Langmuir; 2009 Sep; 25(17):10153-8. PubMed ID: 19637879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypericin: a promising fluorescence marker for differentiating between glioblastoma and neurons in vitro.
    Ritz R; Müller M; Weller M; Dietz K; Kuci S; Roser F; Tatagiba M
    Int J Oncol; 2005 Dec; 27(6):1543-9. PubMed ID: 16273210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biphasic dose-response of antioxidants in hypericin-induced photohemolysis.
    Martirosyan AS; Vardapetyan HR; Tiratsuyan SG; Hovhannisyan AA
    Photodiagnosis Photodyn Ther; 2011 Sep; 8(3):282-7. PubMed ID: 21864803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. synthesis and in vivo delivery studies.
    Gravier J; Schneider R; Frochot C; Bastogne T; Schmitt F; Didelon J; Guillemin F; Barberi-Heyob M
    J Med Chem; 2008 Jul; 51(13):3867-77. PubMed ID: 18553957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy.
    Sun Y; Chen ZL; Yang XX; Huang P; Zhou XP; Du XX
    Nanotechnology; 2009 Apr; 20(13):135102. PubMed ID: 19420486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physicochemical stability of bioadhesive thermoresponsive platforms for methylene blue and hypericin delivery in photodynamic therapy.
    Borghi-Pangoni FB; Junqueira MV; Bruschi ML
    Pharm Dev Technol; 2020 Apr; 25(4):482-491. PubMed ID: 31903830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, in vitro cellular uptake and photo-induced antiproliferative effects of lipophilic hypericin acid derivatives.
    Crnolatac I; Huygens A; van Aerschot A; Busson R; Rozenski J; de Witte PA
    Bioorg Med Chem; 2005 Dec; 13(23):6347-53. PubMed ID: 16213734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypericin-Apomyoglobin: An Enhanced Photosensitizer Complex for the Treatment of Tumor Cells.
    Bianchini P; Cozzolino M; Oneto M; Pesce L; Pennacchietti F; Tognolini M; Giorgio C; Nonell S; Cavanna L; Delcanale P; Abbruzzetti S; Diaspro A; Viappiani C
    Biomacromolecules; 2019 May; 20(5):2024-2033. PubMed ID: 30995399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applicability of new degradable hypericin-polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models.
    Feinweber D; Verwanger T; Brüggemann O; Teasdale I; Krammer B
    Photochem Photobiol Sci; 2014 Nov; 13(11):1607-20. PubMed ID: 25257955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy.
    Yang N; Song S; Ren J; Liu C; Li Z; Qi H; Yu C
    ACS Appl Bio Mater; 2021 Jun; 4(6):5008-5015. PubMed ID: 35007049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encapsulation of anticancer drug curcumin and co-loading with photosensitizer hypericin into lipoproteins investigated by fluorescence resonance energy transfer.
    Jutkova A; Chorvat D; Miskovsky P; Jancura D; Datta S
    Int J Pharm; 2019 Jun; 564():369-378. PubMed ID: 31022501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis.
    Lopera AA; Montoya A; Vélez ID; Robledo SM; Garcia CP
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():138-146. PubMed ID: 29198762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of application and formulation factors on the penetration of hypericin in normal mouse skin and UV induced skin tumors.
    Boiy A; Roelandts R; de Witte PA
    J Photochem Photobiol B; 2007 Dec; 89(2-3):156-62. PubMed ID: 17983765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.