BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19589213)

  • 1. Attenuated total internal reflection Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis.
    Gulley-Stahl HJ; Haas JA; Schmidt KA; Evan AP; Sommer AJ
    Appl Spectrosc; 2009 Jul; 63(7):759-66. PubMed ID: 19589213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the protein content of kidney stones: an explorative study.
    Steenbeke M; De Buyzere ML; Speeckaert MM; Delanghe JR
    Acta Clin Belg; 2022 Oct; 77(5):845-852. PubMed ID: 34743670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a method for the quantitative analysis of urinary stones, formed by a mixture of two components, using infrared spectroscopy.
    García Alvarez JL; Torrejón Martínez MJ; Arroyo Fernández M
    Clin Biochem; 2012 May; 45(7-8):582-7. PubMed ID: 22374172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory.
    Mulready KJ; McGoldrick D
    Urol Res; 2012 Oct; 40(5):483-98. PubMed ID: 22246314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared spectroscopy for analysis of kidney stones.
    Khan AH; Imran S; Talati J; Jafri L
    Investig Clin Urol; 2018 Jan; 59(1):32-37. PubMed ID: 29333512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Idiopathic calcium nephrolithiasis with pure calcium oxalate composition: clinical correlates of the calcium oxalate dihydrate/monohydrate (COD/COM) stone ratio.
    Guerra A; Ticinesi A; Allegri F; Pinelli S; Aloe R; Meschi T
    Urolithiasis; 2020 Jun; 48(3):271-279. PubMed ID: 31506762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis.
    Gulley-Stahl HJ; Bledsoe SB; Evan AP; Sommer AJ
    Appl Spectrosc; 2010 Jan; 64(1):15-22. PubMed ID: 20132593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones.
    Maruyama M; Sawada KP; Tanaka Y; Okada A; Momma K; Nakamura M; Mori R; Furukawa Y; Sugiura Y; Tajiri R; Taguchi K; Hamamoto S; Ando R; Tsukamoto K; Takano K; Imanishi M; Yoshimura M; Yasui T; Mori Y
    PLoS One; 2023; 18(3):e0282743. PubMed ID: 36893192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EDAX versus FTIR in mixed stones.
    Fazil Marickar YM; Lekshmi PR; Varma L; Koshy P
    Urol Res; 2009 Oct; 37(5):271-6. PubMed ID: 19536531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones.
    Manzoor MAP; Agrawal AK; Singh B; Mujeeburahiman M; Rekha PD
    PLoS One; 2019; 14(3):e0214003. PubMed ID: 30901364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis.
    Chatterjee P; Chakraborty A; Mukherjee AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():33-42. PubMed ID: 29660680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [SEM, XRD and FTIR investigation on crystal growth of calcium oxalate modulated by sodium tartrate].
    Zheng H; Chen CY; Ouyang JM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):874-8. PubMed ID: 16883858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium stone disease: a multiform reality.
    Trinchieri A; Castelnuovo C; Lizzano R; Zanetti G
    Urol Res; 2005 Jun; 33(3):194-8. PubMed ID: 15714335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.
    Lanzarotta A
    Appl Spectrosc; 2015; 69(2):205-14. PubMed ID: 25588210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman chemical imaging, a new tool in kidney stone structure analysis: Case-study and comparison to Fourier Transform Infrared spectroscopy.
    Castiglione V; Sacré PY; Cavalier E; Hubert P; Gadisseur R; Ziemons E
    PLoS One; 2018; 13(8):e0201460. PubMed ID: 30075002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FT-Raman spectral analysis of human urinary stones.
    Selvaraju R; Raja A; Thiruppathi G
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():205-10. PubMed ID: 23069621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.
    Singh I
    Int Urol Nephrol; 2008; 40(3):595-602. PubMed ID: 18228157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in Kidney Stone Composition Within the United States.
    Grant C; Guzman G; Stainback RP; Amdur RL; Mufarrij P
    J Endourol; 2018 Oct; 32(10):973-977. PubMed ID: 30039712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and reliable method for composition of concentric layers of kidney stones by fourier transform infrared spectroscopy with KSLS-13.
    Nadeem B; Channa NA; Ghanghro AW
    Pak J Pharm Sci; 2020 Jan; 33(1):53-59. PubMed ID: 32122831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vickers hardness studies of calcium oxalate monohydrate and brushite urinary stones.
    Bouropoulos N; Mouzakis DE; Bithelis G; Liatsikos E
    J Endourol; 2006 Jan; 20(1):59-63. PubMed ID: 16426135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.