BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 19589591)

  • 41. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs.
    Wang N; Li H; Lü W; Li J; Wang J; Zhang Z; Liu Y
    Biomaterials; 2011 Oct; 32(29):6900-11. PubMed ID: 21733571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.
    Zhuang XM; Zhou B; Ouyang JL; Sun HP; Wu YL; Liu Q; Deng FL
    Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Micro-plasma textured Ti-implant surfaces.
    Beck U; Lange R; Neumann HG
    Biomol Eng; 2007 Feb; 24(1):47-51. PubMed ID: 16860601
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells.
    Khang D; Choi J; Im YM; Kim YJ; Jang JH; Kang SS; Nam TH; Song J; Park JW
    Biomaterials; 2012 Sep; 33(26):5997-6007. PubMed ID: 22632766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface modifications and cell-materials interactions with anodized Ti.
    Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces.
    Stiehler M; Lind M; Mygind T; Baatrup A; Dolatshahi-Pirouz A; Li H; Foss M; Besenbacher F; Kassem M; Bünger C
    J Biomed Mater Res A; 2008 Aug; 86(2):448-58. PubMed ID: 17975813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces.
    Zhu X; Chen J; Scheideler L; Altebaeumer T; Geis-Gerstorfer J; Kern D
    Cells Tissues Organs; 2004; 178(1):13-22. PubMed ID: 15550756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone integration capability of alkali- and heat-treated nanobimorphic Ti-15Mo-5Zr-3Al.
    Tsukimura N; Ueno T; Iwasa F; Minamikawa H; Sugita Y; Ishizaki K; Ikeda T; Nakagawa K; Yamada M; Ogawa T
    Acta Biomater; 2011 Dec; 7(12):4267-77. PubMed ID: 21888994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of electrochemical structuring of Ti6Al4V on osteoblast behaviour in vitro.
    Birch MA; Johnson-Lynn S; Nouraei S; Wu QB; Ngalim S; Lu WJ; Watchorn C; Yang TY; McCaskie AW; Roy S
    Biomed Mater; 2012 Jun; 7(3):035016. PubMed ID: 22539092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography.
    Zinger O; Anselme K; Denzer A; Habersetzer P; Wieland M; Jeanfils J; Hardouin P; Landolt D
    Biomaterials; 2004 Jun; 25(14):2695-711. PubMed ID: 14962549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteoblast differentiation onto different biometals with an endoprosthetic surface topography in vitro.
    Jäger M; Urselmann F; Witte F; Zanger K; Li X; Ayers DC; Krauspe R
    J Biomed Mater Res A; 2008 Jul; 86(1):61-75. PubMed ID: 17941017
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osteoblast mechanoresponses on Ti with different surface topographies.
    Sato N; Kubo K; Yamada M; Hori N; Suzuki T; Maeda H; Ogawa T
    J Dent Res; 2009 Sep; 88(9):812-6. PubMed ID: 19767577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of ultraviolet functionalization of titanium on integration with bone.
    Aita H; Hori N; Takeuchi M; Suzuki T; Yamada M; Anpo M; Ogawa T
    Biomaterials; 2009 Feb; 30(6):1015-25. PubMed ID: 19042016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TiO2 -enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation.
    Mozumder MS; Zhu J; Perinpanayagam H
    Biomed Mater; 2011 Jun; 6(3):035009. PubMed ID: 21555842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical and histological behavior of zirconia implants: an experiment in the rat.
    Kohal RJ; Wolkewitz M; Hinze M; Han JS; Bächle M; Butz F
    Clin Oral Implants Res; 2009 Apr; 20(4):333-9. PubMed ID: 19298287
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ti nano-nodular structuring for bone integration and regeneration.
    Ogawa T; Saruwatari L; Takeuchi K; Aita H; Ohno N
    J Dent Res; 2008 Aug; 87(8):751-6. PubMed ID: 18650547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner.
    Keselowsky BG; Wang L; Schwartz Z; Garcia AJ; Boyan BD
    J Biomed Mater Res A; 2007 Mar; 80(3):700-10. PubMed ID: 17133443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces.
    Lavenus S; Trichet V; Le Chevalier S; Hoornaert A; Louarn G; Layrolle P
    Nanomedicine (Lond); 2012 Jul; 7(7):967-80. PubMed ID: 22394187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of topography and composition of titanium surface oxides on osteoblast responses.
    Zhu X; Chen J; Scheideler L; Reichl R; Geis-Gerstorfer J
    Biomaterials; 2004 Aug; 25(18):4087-103. PubMed ID: 15046900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia.
    Rezaei NM; Hasegawa M; Ishijima M; Nakhaei K; Okubo T; Taniyama T; Ghassemi A; Tahsili T; Park W; Hirota M; Ogawa T
    Int J Nanomedicine; 2018; 13():3381-3395. PubMed ID: 29922058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.