BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 19589653)

  • 1. Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay.
    Li H; Fukuda S; Hasegawa Y; Kobayashi H; Purevsuren J; Mushimoto Y; Yamaguchi S
    Brain Dev; 2010 May; 32(5):362-70. PubMed ID: 19589653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stress deteriorates mitochondrial beta-oxidation of long-chain fatty acids in cultured fibroblasts with fatty acid beta-oxidation disorders.
    Li H; Fukuda S; Hasegawa Y; Purevsuren J; Kobayashi H; Mushimoto Y; Yamaguchi S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1669-72. PubMed ID: 20207594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders.
    Djouadi F; Aubey F; Schlemmer D; Ruiter JP; Wanders RJ; Strauss AW; Bastin J
    Hum Mol Genet; 2005 Sep; 14(18):2695-703. PubMed ID: 16115821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel functional assay for simultaneous determination of total fatty acid beta-oxidation flux and acylcarnitine profiling in human skin fibroblasts using (2)H(31)-palmitate by isotope ratio mass spectrometry and electrospray tandem mass spectrometry.
    Law LK; Tang NL; Hui J; Ho CS; Ruiter J; Fok TF; Wanders RJ; Lam CW
    Clin Chim Acta; 2007 Jul; 382(1-2):25-30. PubMed ID: 17442290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bezafibrate can be a new treatment option for mitochondrial fatty acid oxidation disorders: evaluation by in vitro probe acylcarnitine assay.
    Yamaguchi S; Li H; Purevsuren J; Yamada K; Furui M; Takahashi T; Mushimoto Y; Kobayashi H; Hasegawa Y; Taketani T; Fukao T; Fukuda S
    Mol Genet Metab; 2012 Sep; 107(1-2):87-91. PubMed ID: 22841441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valproate induces in vitro accumulation of long-chain fatty acylcarnitines.
    Silva MF; Jakobs C; Duran M; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2001 Aug; 73(4):358-61. PubMed ID: 11509020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenatal diagnosis of mitochondrial fatty acid oxidation defects.
    Nada MA; Vianey-Saban C; Roe CR; Ding JH; Mathieu M; Wappner RS; Bialer MG; McGlynn JA; Mandon G
    Prenat Diagn; 1996 Feb; 16(2):117-24. PubMed ID: 8650121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnitine-acylcarnitine translocase deficiency: Two neonatal cases with common splicing mutation and in vitro bezafibrate response.
    Vatanavicharn N; Yamada K; Aoyama Y; Fukao T; Densupsoontorn N; Jirapinyo P; Sathienkijkanchai A; Yamaguchi S; Wasant P
    Brain Dev; 2015 Aug; 37(7):698-703. PubMed ID: 25459972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of carnitine esters by radio-high performance liquid chromatography in cultured skin fibroblasts from patients with mitochondrial fatty acid oxidation disorders.
    Schmidt-Sommerfeld E; Bobrowski PJ; Penn D; Rhead WJ; Wanders RJ; Bennett MJ
    Pediatr Res; 1998 Aug; 44(2):210-4. PubMed ID: 9702916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency.
    Lund M; Andersen KG; Heaton R; Hargreaves IP; Gregersen N; Olsen RKJ
    Biochim Biophys Acta Mol Basis Dis; 2021 Jun; 1867(6):166100. PubMed ID: 33549744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue carnitine homeostasis in very-long-chain acyl-CoA dehydrogenase-deficient mice.
    Spiekerkoetter U; Tokunaga C; Wendel U; Mayatepek E; Ijlst L; Vaz FM; van Vlies N; Overmars H; Duran M; Wijburg FA; Wanders RJ; Strauss AW
    Pediatr Res; 2005 Jun; 57(6):760-4. PubMed ID: 15774826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro probe acylcarnitine profiling assay using cultured fibroblasts and electrospray ionization tandem mass spectrometry predicts severity of patients with glutaric aciduria type 2.
    Endo M; Hasegawa Y; Fukuda S; Kobayashi H; Yotsumoto Y; Mushimoto Y; Li H; Purevsuren J; Yamaguchi S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1673-6. PubMed ID: 20392676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of L-aminocarnitine, an inhibitor of fatty acid oxidation.
    Chegary M; Te Brinke H; Doolaard M; Ijlst L; Wijburg FA; Wanders RJ; Houten SM
    Mol Genet Metab; 2008 Apr; 93(4):403-10. PubMed ID: 18077198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects?
    Olsen RK; Cornelius N; Gregersen N
    Mol Genet Metab; 2013; 110 Suppl():S31-9. PubMed ID: 24206932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate.
    Djouadi F; Bonnefont JP; Thuillier L; Droin V; Khadom N; Munnich A; Bastin J
    Pediatr Res; 2003 Oct; 54(4):446-51. PubMed ID: 12840153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.
    Roe DS; Yang BZ; Vianey-Saban C; Struys E; Sweetman L; Roe CR
    Mol Genet Metab; 2006 Jan; 87(1):40-7. PubMed ID: 16297647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.
    Diekman EF; van Weeghel M; Wanders RJ; Visser G; Houten SM
    FASEB J; 2014 Jul; 28(7):2891-900. PubMed ID: 24648546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo stable isotope studies in three patients affected with mitochondrial fatty acid oxidation disorders: limited diagnostic use of 1-13C fatty acid breath test using bolus technique.
    Jakobs C; Kneer J; Martin D; Boulloche J; Brivet M; Poll-The BT; Saudubray JM
    Eur J Pediatr; 1997 Aug; 156 Suppl 1():S78-82. PubMed ID: 9266222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of fibrates in the treatment of fatty acid oxidation disorders: revival of classical drugs?
    Djouadi F; Aubey F; Schlemmer D; Gobin S; Laforet P; Wanders RJ; Strauss AW; Bonnefont JP; Bastin J
    J Inherit Metab Dis; 2006; 29(2-3):341-2. PubMed ID: 16763897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.