These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19589997)

  • 1. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.
    Carbone F; Kwon OH; Zewail AH
    Science; 2009 Jul; 325(5937):181-4. PubMed ID: 19589997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum study of laser-induced initial activation of graphite-to-diamond conversion.
    Acocella A; Carbone F; Zerbetto F
    J Am Chem Soc; 2010 Sep; 132(35):12166-7. PubMed ID: 20715816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of axial and radial expansions in carbon nanotubes revealed by ultrafast diffraction and spectroscopy.
    Vanacore GM; van der Veen RM; Zewail AH
    ACS Nano; 2015 Feb; 9(2):1721-9. PubMed ID: 25636018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.
    Adhikari A; Eliason JK; Sun J; Bose R; Flannigan DJ; Mohammed OF
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):3-16. PubMed ID: 27976852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D ultrafast electron microscopy: imaging of atomic motions, acoustic resonances, and moirĂ© fringe dynamics.
    Park HS; Baskin JS; Barwick B; Kwon OH; Zewail AH
    Ultramicroscopy; 2009 Dec; 110(1):7-19. PubMed ID: 19783100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities.
    Suenaga K; Akiyama-Hasegawa K; Niimi Y; Kobayashi H; Nakamura M; Liu Z; Sato Y; Koshino M; Iijima S
    J Electron Microsc (Tokyo); 2012; 61(5):285-91. PubMed ID: 22811432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy.
    Colliex C
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S161-71. PubMed ID: 21844587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-dimensional electron microscopy.
    Zewail AH
    Science; 2010 Apr; 328(5975):187-93. PubMed ID: 20378810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy.
    Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y
    ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of electron energy-loss spectroscopy for nanoscience.
    Yuan J; Wang Z; Fu X; Xie L; Sun Y; Gao S; Jiang J; Hu X; Xu C
    Micron; 2008 Aug; 39(6):658-65. PubMed ID: 18166483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of EELS and EFTEM to the life sciences enabled by the contributions of Ondrej Krivanek.
    Leapman RD
    Ultramicroscopy; 2017 Sep; 180():180-187. PubMed ID: 28258873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy.
    Cohen-Ofri I; Popovitz-Biro R; Weiner S
    Chemistry; 2007; 13(8):2306-10. PubMed ID: 17163552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
    Nicotra G; Ramasse QM; Deretzis I; La Magna A; Spinella C; Giannazzo F
    ACS Nano; 2013 Apr; 7(4):3045-52. PubMed ID: 23530467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A short story of imaging and spectroscopy of two-dimensional materials by scanning transmission electron microscopy.
    Idrobo JC; Zhou W
    Ultramicroscopy; 2017 Sep; 180():156-162. PubMed ID: 28284706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution Z-contrast imaging and EELS study of functional oxide materials.
    Klie RF; Zhao Y; Yang G; Zhu Y
    Micron; 2008 Aug; 39(6):723-33. PubMed ID: 18082411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale mapping of plasmon resonances of functional multibranched gold nanoparticles.
    Mayoral A; Magen C; Jose-Yacaman M
    Chem Commun (Camb); 2012 Sep; 48(69):8667-9. PubMed ID: 22820550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.