These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1959030)

  • 1. Feeding and body weight regulation after 6-OHDA application into the preoptic area.
    Lénárd L; Karádi Z; Jandó G; Yoshimatsu H; Hajnal A; Sándor P; Oomura Y
    Brain Res Bull; 1991; 27(3-4):359-65. PubMed ID: 1959030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amygdalar noradrenergic and dopaminergic mechanisms in the regulation of hunger and thirst-motivated behavior.
    Lénárd L; Hahn Z
    Brain Res; 1982 Feb; 233(1):115-32. PubMed ID: 6800562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Area postrema lesions produce feeding deficits in the rat: effects of preoperative dieting and 2-deoxy-D-glucose.
    Contreras RJ; Fox E; Drugovich ML
    Physiol Behav; 1982 Nov; 29(5):875-84. PubMed ID: 7156225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of conditioned taste aversion after microiontophoretically applied neurotoxins in the medial prefrontal cortex of the rat.
    Hernádi I; Karádi Z; Vígh J; Petykó Z; Egyed R; Berta B; Lénárd L
    Brain Res Bull; 2000 Dec; 53(6):751-8. PubMed ID: 11179839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desmethylimipramine pretreatment prevents 6-hydroxydopamine induced somatostatin receptor reduction in the rat hippocampus.
    López-Sañudo S; Arilla E
    Regul Pept; 1992 Oct; 41(3):227-36. PubMed ID: 1438990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral hypothalamic feeding mechanisms: iontophoretic effects of kainic acid, ibotenic acid and 6-hydroxydopamine.
    Lénárd L; Jandó G; Karádi Z; Hajnal A; Sándor P
    Brain Res Bull; 1988 Jun; 20(6):847-56. PubMed ID: 3136864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies.
    Bellinger LL; Bernardis LL
    Physiol Behav; 2002 Jul; 76(3):431-42. PubMed ID: 12117580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overeating after midbrain 6-hydroxydopamine: prevention by central injection of selective catecholamine reuptake blockers.
    Hernandez L; Hoebel BG
    Brain Res; 1982 Aug; 245(2):333-43. PubMed ID: 6812851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of noradrenergic and dopaminergic nerves in the rat kidney: evidence against significant dopaminergic innervation.
    McGrath BP; Lim AE; Bode K; Willis GL; Smith GC
    Clin Exp Pharmacol Physiol; 1983; 10(5):543-53. PubMed ID: 6416723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that dark-phase hyperphagia induced by neurotoxin 6-hydroxydopamine may be due to decreased leptin and increased neuropeptide Y signaling.
    Kalra PS; Dube MG; Xu B; Farmerie WG; Kalra SP
    Physiol Behav; 1998 Mar; 63(5):829-35. PubMed ID: 9618006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine restores feeding response to 2-deoxy-D-glucose in 6-hydroxydopamine-treated rats.
    Stricker EM; Zimmerman MB; Friedman MI; Zigmond MJ
    Nature; 1977 May; 267(5607):174-5. PubMed ID: 16073437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of catecholamine innervation in the medial prefrontal cortex on the regulation of body weight and food intake.
    Gálosi R; Hajnal A; Petykó Z; Hartmann G; Karádi Z; Lénárd L
    Behav Brain Res; 2015 Jun; 286():318-27. PubMed ID: 25783808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of drinking behavior of preweanling rats with lateral preoptic damage.
    Almli CR; Golden GT; McMullen NT
    Brain Res Bull; 1976; 1(5):437-42. PubMed ID: 1009444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of male rat copulatory behavior by preoptic incertohypothalamic dopamine neurons.
    Bitran D; Hull EM; Holmes GM; Lookingland KJ
    Brain Res Bull; 1988 Mar; 20(3):323-31. PubMed ID: 3130153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naltrexone suppresses ethanol intake in 6-hydroxydopamine-treated rats.
    Koistinen M; Tuomainen P; Hyytiä P; Kiianmaa K
    Alcohol Clin Exp Res; 2001 Nov; 25(11):1605-12. PubMed ID: 11707635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats.
    Fink JS; Smith GP
    Brain Res; 1980 Oct; 199(2):359-84. PubMed ID: 7417789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of central norepinephrine infusions on drinking behavior induced by angiotensin after 6-hydroxydopamine injections into the anteroventral region of the third ventricle (AV3V).
    Cunningham JT; Johnson AK
    Brain Res; 1991 Aug; 558(1):112-6. PubMed ID: 1933373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolytic lesions of the substantia innominata and lateral preoptic area attenuate the 'supersensitive' locomotor response to apomorphine resulting from denervation of the nucleus accumbens.
    Swerdlow NR; Swanson LW; Koob GF
    Brain Res; 1984 Jul; 306(1-2):141-8. PubMed ID: 6087974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eating induced by injections of 2-deoxy-D-glucose in neurologically intact hypodipsic rats.
    Watson PJ; Biderman MD; Warfield DR
    Int J Neurosci; 1981; 15(1-2):95-8. PubMed ID: 7287331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat.
    Erinoff L; MacPhail RC; Heller A; Seiden LS
    Brain Res; 1979 Mar; 164():195-205. PubMed ID: 427556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.