These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19590751)

  • 1. Using Microfluidics to Decouple Nucleation and Growth of Protein Crystals.
    Shim JU; Cristobal G; Link DR; Thorsen T; Fraden S
    Cryst Growth Des; 2007; 7(11):2192-2194. PubMed ID: 19590751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control and measurement of the phase behavior of aqueous solutions using microfluidics.
    Shim JU; Cristobal G; Link DR; Thorsen T; Jia Y; Piattelli K; Fraden S
    J Am Chem Soc; 2007 Jul; 129(28):8825-35. PubMed ID: 17580868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the nucleation rate of Lysozyme using microfluidics.
    Selimović S; Jia Y; Fraden S
    Cryst Growth Des; 2009 Apr; 9(4):1806-1810. PubMed ID: 20161207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor diffusion, nucleation rates and the reservoir to crystallization volume ratio.
    Forsythe EL; Maxwell DL; Pusey M
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1601-5. PubMed ID: 12351870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology.
    Pratt SL; Zath GK; Akiyama T; Williamson KS; Franklin MJ; Chang CB
    Front Microbiol; 2019; 10():2112. PubMed ID: 31608020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping and manipulating temperature-concentration phase diagrams using microfluidics.
    Selimović S; Gobeaux F; Fraden S
    Lab Chip; 2010 Jul; 10(13):1696-9. PubMed ID: 20407673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorph farming of acetaminophen and sulfathiazole on a chip.
    Lee T; Hung ST; Kuo CS
    Pharm Res; 2006 Nov; 23(11):2542-55. PubMed ID: 16969701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization.
    Zhou X; Lau L; Lam WW; Au SW; Zheng B
    Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein crystallization in low gravity by step gradient diffusion method.
    Sygusch J; Coulombe R; Cassanto JM; Sportiello MG; Todd P
    J Cryst Growth; 1996 May; 162(3-4):167-72. PubMed ID: 11542285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic dialysis using photo-patterned hydrogel membranes in PDMS chips.
    Nguyen HT; Massino M; Keita C; Salmon JB
    Lab Chip; 2020 Jun; 20(13):2383-2393. PubMed ID: 32510526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of colloidal silica crystals inside double emulsion drops.
    Shirk K; Steiner C; Kim JW; Marquez M; Martinez CJ
    Langmuir; 2013 Sep; 29(38):11849-57. PubMed ID: 23957634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of salt from a salt-induced protein crystal without cross-linking. Preliminary examination of "desalted" crystals of phosphoglucomutase by X-ray crystallography at low temperature.
    Ray WJ; Bolin JT; Puvathingal JM; Minor W; Liu YW; Muchmore SW
    Biochemistry; 1991 Jul; 30(28):6866-75. PubMed ID: 1712631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A crystallization apparatus for temperature-controlled flow-cell dialysis with real-time visualization.
    Junius N; Oksanen E; Terrien M; Berzin C; Ferrer JL; Budayova-Spano M
    J Appl Crystallogr; 2016 Jun; 49(Pt 3):806-813. PubMed ID: 27275137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation.
    Coliaie P; Kelkar MS; Langston M; Liu C; Nazemifard N; Patience D; Skliar D; Nere NK; Singh MR
    Lab Chip; 2021 Jun; 21(12):2333-2342. PubMed ID: 34096561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets.
    Gong T; Shen J; Hu Z; Marquez M; Cheng Z
    Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform for pharmaceutical salt screening.
    Thorson MR; Goyal S; Schudel BR; Zukoski CF; Zhang GG; Gong Y; Kenis PJ
    Lab Chip; 2011 Nov; 11(22):3829-37. PubMed ID: 21956673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of nucleation conditions using levitated drops for protein crystallization.
    Santesson S; Cedergren-Zeppezauer ES; Johansson T; Laurell T; Nilsson J; Nilsson S
    Anal Chem; 2003 Apr; 75(7):1733-40. PubMed ID: 12705610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.