These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19590751)

  • 21. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.
    Lee JN; Park C; Whitesides GM
    Anal Chem; 2003 Dec; 75(23):6544-54. PubMed ID: 14640726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction.
    Junius N; Jaho S; Sallaz-Damaz Y; Borel F; Salmon JB; Budayova-Spano M
    Lab Chip; 2020 Jan; 20(2):296-310. PubMed ID: 31804643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations.
    Jamieson EJ; Fewkes CJ; Berry JD; Dagastine RR
    J Colloid Interface Sci; 2019 May; 544():130-143. PubMed ID: 30831547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion.
    Saridakis E; Chayen NE
    Protein Sci; 2000 Apr; 9(4):755-7. PubMed ID: 10794418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals.
    Kim YY; Freeman CL; Gong X; Levenstein MA; Wang Y; Kulak A; Anduix-Canto C; Lee PA; Li S; Chen L; Christenson HK; Meldrum FC
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11885-11890. PubMed ID: 28767197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleation of protein crystals under the influence of solution shear flow.
    Penkova A; Pan W; Hodjaoglu F; Vekilov PG
    Ann N Y Acad Sci; 2006 Sep; 1077():214-31. PubMed ID: 17124126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleation and solidification in static arrays of monodisperse drops.
    Edd JF; Humphry KJ; Irimia D; Weitz DA; Toner M
    Lab Chip; 2009 Jul; 9(13):1859-65. PubMed ID: 19532960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.
    Roach LS; Song H; Ismagilov RF
    Anal Chem; 2005 Feb; 77(3):785-96. PubMed ID: 15679345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of polyethylene glycol-400 at low concentrations on long-term growth of muscle phosphoglucomutase crystals from concentrated salt solutions.
    Ray WJ
    Proteins; 1992 Oct; 14(2):300-8. PubMed ID: 1409576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals.
    Judge RA; Jacobs RS; Frazier T; Snell EH; Pusey ML
    Biophys J; 1999 Sep; 77(3):1585-93. PubMed ID: 10465769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Versatile Bonding Method for PDMS and SU-8 and Its Application towards a Multifunctional Microfluidic Device.
    Zhu Z; Chen P; Liu K; Escobedo C
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation.
    Dettinger P; Wang W; Ahmed N; Zhang Y; Loeffler D; Kull T; Etzrodt M; Lengerke C; Schroeder T
    Lab Chip; 2020 Nov; 20(22):4246-4254. PubMed ID: 33063816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.
    Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS
    Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput culture and embedment of spheroid array using droplet contact-based spheroid transfer.
    Kim H; Cho CH; Park JK
    Biomicrofluidics; 2018 Jul; 12(4):044109. PubMed ID: 30867862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling protein crystal nucleation by droplet-based microfluidics.
    Maeki M; Teshima Y; Yoshizuka S; Yamaguchi H; Yamashita K; Miyazaki M
    Chemistry; 2014 Jan; 20(4):1049-56. PubMed ID: 24382819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis.
    Schmelzer JWP; Tropin TV; Fokin VM; Abyzov AS; Zanotto ED
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
    Zheng B; Gerdts CJ; Ismagilov RF
    Curr Opin Struct Biol; 2005 Oct; 15(5):548-55. PubMed ID: 16154351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using microfluidics to observe the effect of mixing on nucleation of protein crystals.
    Chen DL; Gerdts CJ; Ismagilov RF
    J Am Chem Soc; 2005 Jul; 127(27):9672-3. PubMed ID: 15998056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.
    Zhao Y; Lai HS; Zhang G; Lee GB; Li WJ
    Lab Chip; 2014 Nov; 14(22):4426-34. PubMed ID: 25254511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion.
    Hansen CL; Skordalakes E; Berger JM; Quake SR
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16531-6. PubMed ID: 12486223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.