These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19591445)

  • 1. Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study.
    Burov SV; Vanin AA; Brodskaya EN
    J Phys Chem B; 2009 Aug; 113(31):10715-20. PubMed ID: 19591445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Principal role of the stepwise aggregation mechanism in ionic surfactant solutions near the critical micelle concentration. Molecular dynamics study".
    Vila Verde A
    J Phys Chem B; 2011 Mar; 115(8):1927. PubMed ID: 21291222
    [No Abstract]   [Full Text] [Related]  

  • 3. A multiscale model for kinetics of formation and disintegration of spherical micelles.
    Mohan G; Kopelevich DI
    J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained kinetic computations for rare events: application to micelle formation.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44908. PubMed ID: 15740299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular dynamics study of free energy of micelle formation for sodium dodecyl sulfate in water and its size distribution.
    Yoshii N; Iwahashi K; Okazaki S
    J Chem Phys; 2006 May; 124(18):184901. PubMed ID: 16709133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids.
    Pérez-Sánchez G; Gomes JR; Jorge M
    Langmuir; 2013 Feb; 29(7):2387-96. PubMed ID: 23343439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micellization behavior of coarse grained surfactant models.
    Sanders SA; Panagiotopoulos AZ
    J Chem Phys; 2010 Mar; 132(11):114902. PubMed ID: 20331315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles.
    Jorge M
    Langmuir; 2008 Jun; 24(11):5714-25. PubMed ID: 18454560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.
    Lee MT; Vishnyakov A; Neimark AV
    J Phys Chem B; 2013 Sep; 117(35):10304-10. PubMed ID: 23837499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.
    Ruiz-Morales Y; Romero-Martínez A
    J Phys Chem B; 2018 Apr; 122(14):3931-3943. PubMed ID: 29533651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the mixed surfactant micelle formation.
    Cui X; Jiang Y; Yang C; Lu X; Chen H; Mao S; Liu M; Yuan H; Luo P; Du Y
    J Phys Chem B; 2010 Jun; 114(23):7808-16. PubMed ID: 20481561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained molecular dynamics simulation of the aggregation properties of multiheaded cationic surfactants in water.
    Samanta SK; Bhattacharya S; Maiti PK
    J Phys Chem B; 2009 Oct; 113(41):13545-50. PubMed ID: 19775096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.