BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19591474)

  • 1. Clarification of the stereochemical course of nucleophilic substitution of arylsulfonate-based nucleophile assisting leaving groups.
    Braddock DC; Pouwer RH; Burton JW; Broadwith P
    J Org Chem; 2009 Aug; 74(16):6042-9. PubMed ID: 19591474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inversion of Configuration at the Phosphorus Nucleophile in the Diastereoselective and Enantioselective Synthesis of P-Stereogenic syn-Phosphiranes from Chiral Epoxides.
    Muldoon JA; Varga BR; Deegan MM; Chapp TW; Eördögh ÁM; Hughes RP; Glueck DS; Moore CE; Rheingold AL
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5047-5051. PubMed ID: 29484790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in our mechanistic understanding of S(N)V reactions.
    Bernasconi CF; Rappoport Z
    Acc Chem Res; 2009 Aug; 42(8):993-1003. PubMed ID: 19522460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleophilic displacement reactions in ionic liquids: substrate and solvent effect in the reaction of NaN(3) and KCN with alkyl halides and tosylates.
    Chiappe C; Pieraccini D; Saullo P
    J Org Chem; 2003 Aug; 68(17):6710-5. PubMed ID: 12919037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arylsulfonate-based nucleophile assisting leaving groups.
    Lepore SD; Bhunia AK; Cohn P
    J Org Chem; 2005 Sep; 70(20):8117-21. PubMed ID: 16277337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of 1,4 alkyl group migration in hypervalent halonium ylides: the stereochemical course.
    Moriarty RM; Tyagi S; Ivanov D; Constantinescu M
    J Am Chem Soc; 2008 Jun; 130(24):7564-5. PubMed ID: 18491909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified Gaussian-2 level investigation of the identity ion-pair SN2 reactions of lithium halide and methyl halide with inversion and retention mechanisms.
    Ren Y; Chu SY
    J Comput Chem; 2004 Mar; 25(4):461-71. PubMed ID: 14735566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereochemical memory effects in alkene radical cation/anion contact ion pairs: effect of substituents, and models for diastereoselectivity.
    Crich D; Ranganathan K
    J Am Chem Soc; 2005 Jul; 127(27):9924-9. PubMed ID: 15998099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly diastereoselective lithiation and substitution of an (S)-prolinyl thiocarbamate via sterically homogeneous lithio(thiocarbamate): synthesis of enantiomerically pure prolinethiols.
    Sonawane RP; Mück-Lichtenfeld C; Fröhlich R; Bergander K; Hoppe D
    Chemistry; 2007; 13(22):6419-29. PubMed ID: 17503415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoinvertive S
    Suresh R; Orbach N; Marek I
    Angew Chem Int Ed Engl; 2024 May; ():e202407602. PubMed ID: 38763909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly diastereoselective Friedel-Crafts alkylation reactions via chiral alpha-functionalized benzylic carbocations.
    Stadler D; Bach T
    Chem Asian J; 2008 Feb; 3(2):272-84. PubMed ID: 17985329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric allylic substitution catalyzed by C1-symmetrical complexes of molybdenum: structural requirements of the ligand and the stereochemical course of the reaction.
    Malkov AV; Gouriou L; Lloyd-Jones GC; Starý I; Langer V; Spoor P; Vinader V; Kocovský P
    Chemistry; 2006 Sep; 12(26):6910-29. PubMed ID: 16807930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regio- and stereoselective lithiation and electrophilic substitution reactions of N-Alkyl-2,3-diphenylaziridines: solvent effect.
    Luisi R; Capriati V; Florio S; Musio B
    Org Lett; 2007 Mar; 9(7):1263-6. PubMed ID: 17338535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effect observed in nucleophilic substitution of 4'-(benzoyloxy)cordycepin with AlMe(3): stereochemical evidence for S(N)i mechanism.
    Kubota Y; Kunikata M; Haraguchi K; Tanaka H
    J Org Chem; 2009 May; 74(9):3402-5. PubMed ID: 19344163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of nucleophilic substitution at sulfur in sulfinyl derivatives.
    Norton SH; Bachrach SM; Hayes JM
    J Org Chem; 2005 Jul; 70(15):5896-902. PubMed ID: 16018683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-controlled leaving-group selectivity in aromatic nucleophilic substitution.
    Hintermann L; Masuo R; Suzuki K
    Org Lett; 2008 Nov; 10(21):4859-62. PubMed ID: 18841994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise walden inversion in nucleophilic substitution at phosphorus.
    van Bochove MA; Swart M; Bickelhaupt FM
    Phys Chem Chem Phys; 2009 Jan; 11(2):259-67. PubMed ID: 19088981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereochemical inversion in the vinylic substitution of boronic esters to give iodonium salts: participation of the internal oxy group.
    Fujita M; Lee HJ; Okuyama T
    Org Lett; 2006 Mar; 8(7):1399-401. PubMed ID: 16562901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.