These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19591676)

  • 1. Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model.
    Zheng W; Tekpinar M
    BMC Struct Biol; 2009 Jul; 9():45. PubMed ID: 19591676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of large proteins through hierarchical levels of coarse-grained structures.
    Doruker P; Jernigan RL; Bahar I
    J Comput Chem; 2002 Jan; 23(1):119-27. PubMed ID: 11913377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of conformational change in proteins by single-residue perturbations.
    Atilgan C; Gerek ZN; Ozkan SB; Atilgan AR
    Biophys J; 2010 Aug; 99(3):933-43. PubMed ID: 20682272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of key residues in proteins by using their physical characters.
    Chen C; Li L; Xiao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041926. PubMed ID: 16711855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural position correlation analysis (SPCA) for protein family.
    Du QS; Meng JZ; Wang CH; Long SY; Huang RB
    PLoS One; 2011; 6(12):e28206. PubMed ID: 22163002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Fluctuation Properties in Protein Elastic Networks with Sequence-Specific and Distance-Dependent Interactions.
    Amyot R; Togashi Y; Flechsig H
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31575003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction of an amino acid network for understanding protein structure and function.
    Yan W; Zhou J; Sun M; Chen J; Hu G; Shen B
    Amino Acids; 2014 Jun; 46(6):1419-39. PubMed ID: 24623120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models.
    Kmiecik S; Kouza M; Badaczewska-Dawid AE; Kloczkowski A; Kolinski A
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30404229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the flexibility of large conformational changes in protein structures through local perturbations.
    Ho BK; Agard DA
    PLoS Comput Biol; 2009 Apr; 5(4):e1000343. PubMed ID: 19343225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse grained normal mode analysis vs. refined Gaussian Network Model for protein residue-level structural fluctuations.
    Park JK; Jernigan R; Wu Z
    Bull Math Biol; 2013 Jan; 75(1):124-60. PubMed ID: 23296997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automatic method for assessing structural importance of amino acid positions.
    Sadowski MI; Jones DT
    BMC Struct Biol; 2009 Mar; 9():10. PubMed ID: 19261183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of motions in membrane proteins by elastic network models and their experimental validation.
    Isin B; Tirupula KC; Oltvai ZN; Klein-Seetharaman J; Bahar I
    Methods Mol Biol; 2012; 914():285-317. PubMed ID: 22976035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biased fragment distribution in MC simulation of protein folding.
    Martineau E; L'Heureux PJ; Gunn JR
    J Comput Chem; 2004 Nov; 25(15):1895-903. PubMed ID: 15378533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.