These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19592010)

  • 1. Rescuing macrophage function following severe thermal injury.
    Herrmann JL
    J Surg Res; 2009 Dec; 157(2):158-60. PubMed ID: 19592010
    [No Abstract]   [Full Text] [Related]  

  • 2. Opiate analgesics contribute to the development of post-injury immunosuppression.
    Alexander M; Daniel T; Chaudry IH; Schwacha MG
    J Surg Res; 2005 Nov; 129(1):161-8. PubMed ID: 16139307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of macrophage (M phi) and PGE-2 in postburn immunosuppression.
    Yang L; Hsu B
    Burns; 1992 Apr; 18(2):132-6. PubMed ID: 1590928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severity of burn injury and sepsis determines the cytokine responses of bone marrow progenitor-derived macrophages.
    Cohen MJ; Carroll C; He LK; Muthu K; Gamelli RL; Jones SB; Shankar R
    J Trauma; 2007 Apr; 62(4):858-67. PubMed ID: 17426540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cellular basis of post-burn immunosuppression: macrophages and mediators.
    Schwacha MG; Chaudry IH
    Int J Mol Med; 2002 Sep; 10(3):239-43. PubMed ID: 12165794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CpG oligonucleotides activate the immune response in burned mice.
    Yabuki T; Takeyama N; Tsuda M; Saitoh F; Tanaka T; Noguchi H; Nakatani T
    J Surg Res; 2010 Jun; 161(1):111-8. PubMed ID: 19540526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma- and nitric oxide-mediated pathways.
    Duan X; Yarmush D; Leeder A; Yarmush ML; Mitchell RN
    J Leukoc Biol; 2008 Feb; 83(2):305-13. PubMed ID: 18024716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal injury-induced immunosuppression in mice: the role of macrophage-derived reactive nitrogen intermediates.
    Schwacha MG; Somers SD
    J Leukoc Biol; 1998 Jan; 63(1):51-8. PubMed ID: 9469472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage suppression of granulocyte and macrophage growth following burn wound infection.
    Gamelli RL; He LK; Liu H
    J Trauma; 1994 Dec; 37(6):888-92. PubMed ID: 7996600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of mast cells and expression of Annexin A1 protein in a second degree burn model with silver sulfadiazine treatment.
    Souza HR; de Azevedo LR; Possebon L; Costa SS; Iyomasa-Pilon MM; Oliani SM; Girol AP
    PLoS One; 2017; 12(3):e0173417. PubMed ID: 28278234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow norepinephrine mediates development of functionally different macrophages after thermal injury and sepsis.
    Cohen MJ; Shankar R; Stevenson J; Fernandez R; Gamelli RL; Jones SB
    Ann Surg; 2004 Jul; 240(1):132-41. PubMed ID: 15213629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depression of in vivo clearance function of hepatic macrophage complement receptors following thermal injury.
    Cuddy BG; Loegering DJ; Blumenstock FA
    Proc Soc Exp Biol Med; 1984 Sep; 176(4):443-51. PubMed ID: 6463054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toll-like receptor 2 and 4 ligation results in complex altered cytokine profiles early and late after burn injury.
    Cairns BA; Barnes CM; Mlot S; Meyer AA; Maile R
    J Trauma; 2008 Apr; 64(4):1069-77; discussion 1077-8. PubMed ID: 18404077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydroepiandrosterone functions as more than an antiglucocorticoid in preserving immunocompetence after thermal injury.
    Araneo B; Daynes R
    Endocrinology; 1995 Feb; 136(2):393-401. PubMed ID: 7835270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism.
    Kimura Y; Sumiyoshi M; Samukawa K; Satake N; Sakanaka M
    Eur J Pharmacol; 2008 Apr; 584(2-3):415-23. PubMed ID: 18353310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunosuppression following thermal injury: the pathogenesis of immunodysfunction.
    O'Sullivan ST; O'Connor TP
    Br J Plast Surg; 1997 Dec; 50(8):615-23. PubMed ID: 9613404
    [No Abstract]   [Full Text] [Related]  

  • 17. Recombinant human arginase I elicited immunosuppression in activated macrophages through inhibiting autophagy.
    Wang Z; Song P; Li Y; Wang S; Fan J; Zhang X; Luan J; Chen W; Wang Y; Liu P; Ju D
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4825-4838. PubMed ID: 31053913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between burn size, immunosuppression, and macrophage hyperactivity in a murine model of thermal injury.
    Alexander M; Chaudry IH; Schwacha MG
    Cell Immunol; 2002 Nov; 220(1):63-9. PubMed ID: 12718940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phagocytosis in experimental burns.
    Di Maio A; Di Maio D; Jacques L
    J Surg Res; 1976 Dec; 21(6):437-48. PubMed ID: 796589
    [No Abstract]   [Full Text] [Related]  

  • 20. Does glutamine contribute to immunosuppression after major burns?
    Parry-Billings M; Evans J; Calder PC; Newsholme EA
    Lancet; 1990 Sep; 336(8714):523-5. PubMed ID: 1975037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.