These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19592394)

  • 21. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein secondary structure prediction using three neural networks and a segmental semi Markov model.
    Malekpour SA; Naghizadeh S; Pezeshk H; Sadeghi M; Eslahchi C
    Math Biosci; 2009 Feb; 217(2):145-50. PubMed ID: 19046975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting interresidue contacts using templates and pathways.
    Shao Y; Bystroff C
    Proteins; 2003; 53 Suppl 6():497-502. PubMed ID: 14579339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ; Park J
    Proteins; 1995 Nov; 23(3):398-402. PubMed ID: 8710832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins.
    Bystroff C; Thorsson V; Baker D
    J Mol Biol; 2000 Aug; 301(1):173-90. PubMed ID: 10926500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-stage prediction of protein beta-sheets by neural networks, alignments and graph algorithms.
    Cheng J; Baldi P
    Bioinformatics; 2005 Jun; 21 Suppl 1():i75-84. PubMed ID: 15961501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.
    Bulashevska A; Stein M; Jackson D; Eils R
    Comput Biol Chem; 2009 Dec; 33(6):457-60. PubMed ID: 19892602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of disordered regions in proteins from position specific score matrices.
    Jones DT; Ward JJ
    Proteins; 2003; 53 Suppl 6():573-8. PubMed ID: 14579348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
    Lampros C; Costas Papaloukas ; Exarchos TP; Yorgos Goletsis ; Fotiadis DI
    Comput Biol Med; 2007 Sep; 37(9):1211-24. PubMed ID: 17161834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks.
    Shepherd AJ; Gorse D; Thornton JM
    Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information.
    Bartoli L; Fariselli P; Krogh A; Casadio R
    Bioinformatics; 2009 Nov; 25(21):2757-63. PubMed ID: 19744995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced protein fold recognition using a structural alphabet.
    Deschavanne P; Tufféry P
    Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training.
    Dor O; Zhou Y
    Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PDP-CON: prediction of domain/linker residues in protein sequences using a consensus approach.
    Chatterjee P; Basu S; Zubek J; Kundu M; Nasipuri M; Plewczynski D
    J Mol Model; 2016 Apr; 22(4):72. PubMed ID: 26969678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy.
    Martelli PL; Fariselli P; Malaguti L; Casadio R
    Protein Sci; 2002 Nov; 11(11):2735-9. PubMed ID: 12381855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved prediction of the number of residue contacts in proteins by recurrent neural networks.
    Pollastri G; Baldi P; Fariselli P; Casadio R
    Bioinformatics; 2001; 17 Suppl 1():S234-42. PubMed ID: 11473014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.