BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19592600)

  • 1. Monte Carlo determination of the characteristic limits in measurement of ionising radiation--fundamentals and numerics.
    Weise K; Kanisch G; Michel R; Schläger M; Schrammel D; Täschner M
    Radiat Prot Dosimetry; 2009 Jul; 135(3):169-96. PubMed ID: 19592600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian decision threshold, detection limit and confidence limits in ionising-radiation measurement.
    Weise K; Hübel K; Rose E; Schläger M; Schrammel D; Täschner M; Michel R
    Radiat Prot Dosimetry; 2006; 121(1):52-63. PubMed ID: 16868015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainties in personal dosimetry for external radiation: a Monte Carlo approach.
    van Dijk JW
    Radiat Prot Dosimetry; 2006; 121(1):31-9. PubMed ID: 17052989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainties beyond statistics in Monte Carlo simulations.
    Hughes HG
    Radiat Prot Dosimetry; 2007; 126(1-4):45-51. PubMed ID: 17766264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of flux distributions with Monte Carlo functional expansion tallies.
    Griesheimer DP; Martin WR; Holloway JP
    Radiat Prot Dosimetry; 2005; 115(1-4):428-32. PubMed ID: 16381761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements.
    Kim J; Hill R; Claridge Mackonis E; Kuncic Z
    Phys Med Biol; 2010 Feb; 55(3):783-97. PubMed ID: 20071763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: application to direct cadmium measurement in water by GFAAS.
    Theodorou D; Meligotsidou L; Karavoltsos S; Burnetas A; Dassenakis M; Scoullos M
    Talanta; 2011 Feb; 83(5):1568-74. PubMed ID: 21238753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncertainties in doses from intakes of radionuclides assessed from monitoring measurements.
    Etherington G; Birchall A; Puncher M; Molokanov A; Blanchardon E
    Radiat Prot Dosimetry; 2006; 121(1):40-51. PubMed ID: 17135426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to account for uncertainty due to measurement errors in an uncertainty analysis using Monte Carlo simulation.
    Hofer E
    Health Phys; 2008 Sep; 95(3):277-90. PubMed ID: 18695409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo methods and techniques status and prospects for future evolution.
    Vaz P
    Appl Radiat Isot; 2010; 68(4-5):536-41. PubMed ID: 19942445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of a Monte Carlo method for uncertainty calculation, with an application to the measurement of neutron ambient dose equivalent rate.
    Cox M; Harris P; Nam G; Thomas D
    Radiat Prot Dosimetry; 2006; 121(1):12-23. PubMed ID: 16877469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of a computed tomography x-ray tube.
    Bazalova M; Verhaegen F
    Phys Med Biol; 2007 Oct; 52(19):5945-55. PubMed ID: 17881811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty in radiation dosimetry: basic concepts and methods.
    Siebert BR
    Radiat Prot Dosimetry; 2006; 121(1):3-11. PubMed ID: 16868011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of doses calculated by the Monte Carlo method and measured by LiF TLD in the buildup region for a 60Co photon beam.
    Budanec M; Knezević Z; Bokulić T; Mrcela I; Vrtar M; Vekić B; Kusić Z
    Appl Radiat Isot; 2008 Dec; 66(12):1925-9. PubMed ID: 18541436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit.
    Incerti S; Gault N; Habchi C; Lefaix JL; Moretto P; Poncy JL; Pouthier T; Seznec H
    Radiat Prot Dosimetry; 2006; 122(1-4):327-9. PubMed ID: 17132663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitfalls and modelling inconsistencies in computational radiation dosimetry: lessons learnt from the QUADOS intercomparison. Part I: Neutrons and uncertainties.
    Siebert BR; Tanner RJ; Chartier JL; Agosteo S; Grosswendt B; Gualdrini G; Ménard S; Kodeli I; Leuthold GP; Price RA; Tagziria H; Terrissol M; Zankl M
    Radiat Prot Dosimetry; 2006; 118(2):144-54. PubMed ID: 16698968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The examination of source distribution in a large sample by Monte Carlo simulation.
    Gurau D; Sima O
    Appl Radiat Isot; 2012 Sep; 70(9):2141-3. PubMed ID: 22417694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of transmission data of diagnostic X rays through concrete using Monte Carlo simulation.
    Noto K; Koshida K; Iida H; Fukuda A
    Radiat Prot Dosimetry; 2009 Feb; 133(3):144-52. PubMed ID: 19307234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The denoising of Monte Carlo dose distributions using convolution superposition calculations.
    El Naqa I; Cui J; Lindsay P; Olivera G; Deasy JO
    Phys Med Biol; 2007 Sep; 52(17):N375-85. PubMed ID: 17762073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.