These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19592731)

  • 1. The SNaP Framework: A VR Tool for Assessing Spatial Navigation.
    Annett M; Bischof WF
    Stud Health Technol Inform; 2009; 144():61-5. PubMed ID: 19592731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.
    Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J
    J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality rehabilitation of spatial abilities after brain damage.
    Koenig ST; Crucian GP; Dalrymple-Alford JC; Dünser A
    Stud Health Technol Inform; 2009; 144():105-7. PubMed ID: 19592742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Reality Experiments with Physiological Measures.
    Weibel RP; Grübel J; Zhao H; Thrash T; Meloni D; Hölscher C; Schinazi VR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments.
    Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C
    Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.
    Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M
    Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age and dementia related differences in spatial navigation within an immersive virtual environment.
    Zakzanis KK; Quintin G; Graham SJ; Mraz R
    Med Sci Monit; 2009 Apr; 15(4):CR140-50. PubMed ID: 19333197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mongolian gerbils learn to navigate in complex virtual spaces.
    Thurley K; Henke J; Hermann J; Ludwig B; Tatarau C; Wätzig A; Herz AV; Grothe B; Leibold C
    Behav Brain Res; 2014 Jun; 266():161-8. PubMed ID: 24631394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WeaVR: a self-contained and wearable immersive virtual environment simulation system.
    Hodgson E; Bachmann ER; Vincent D; Zmuda M; Waller D; Calusdian J
    Behav Res Methods; 2015 Mar; 47(1):296-307. PubMed ID: 24737097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landmarks: A solution for spatial navigation and memory experiments in virtual reality.
    Starrett MJ; McAvan AS; Huffman DJ; Stokes JD; Kyle CT; Smuda DN; Kolarik BS; Laczko J; Ekstrom AD
    Behav Res Methods; 2021 Jun; 53(3):1046-1059. PubMed ID: 32939682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel apparatus for assessing visual cue-based navigation in rodents.
    Lester AW; Kapellusch AJ; Barnes CA
    J Neurosci Methods; 2020 May; 338():108667. PubMed ID: 32169584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A platform for combining virtual reality experiments with functional magnetic resonance imaging.
    Mraz R; Hong J; Quintin G; Staines WR; McIlroy WE; Zakzanis KK; Graham SJ
    Cyberpsychol Behav; 2003 Aug; 6(4):359-68. PubMed ID: 14511447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construct and face validity of a virtual reality-based camera navigation curriculum.
    Shetty S; Panait L; Baranoski J; Dudrick SJ; Bell RL; Roberts KE; Duffy AJ
    J Surg Res; 2012 Oct; 177(2):191-5. PubMed ID: 22739048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study.
    Kober SE; Kurzmann J; Neuper C
    Int J Psychophysiol; 2012 Mar; 83(3):365-74. PubMed ID: 22206906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uses of virtual reality in clinical training: developing the spatial skills of children with mobility impairments.
    Stanton D; Foreman N; Wilson PN
    Stud Health Technol Inform; 1998; 58():219-32. PubMed ID: 10350923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality as allocentric/egocentric technology for the assessment of cognitive decline in the elderly.
    Morganti F; Riva G
    Stud Health Technol Inform; 2014; 196():278-84. PubMed ID: 24732522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.