BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19592734)

  • 1. Walking in an immersive virtual reality.
    Menegoni F; Albani G; Bigoni M; Priano L; Trotti C; Galli M; Mauro A
    Stud Health Technol Inform; 2009; 144():72-6. PubMed ID: 19592734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH; Brey RH; Robb RA; Bang TJ; Kaufman KR
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces.
    Hollman JH; Brey RH; Bang TJ; Kaufman KR
    Gait Posture; 2007 Jul; 26(2):289-94. PubMed ID: 17056258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of adding a virtual reality environment to different modes of treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of virtual reality environments on overground walking in people with Parkinson disease and freezing of gait.
    Yamagami M; Imsdahl S; Lindgren K; Bellatin O; Nhan N; Burden SA; Pradhan S; Kelly VE
    Disabil Rehabil Assist Technol; 2023 Apr; 18(3):266-273. PubMed ID: 33155870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality-enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics.
    De Keersmaecker E; Van Bladel A; Zaccardi S; Lefeber N; Rodriguez-Guerrero C; Kerckhofs E; Jansen B; Swinnen E
    J Neuroeng Rehabil; 2023 Sep; 20(1):124. PubMed ID: 37749566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics.
    Horsak B; Simonlehner M; Schöffer L; Dumphart B; Jalaeefar A; Husinsky M
    Front Bioeng Biotechnol; 2021; 9():780314. PubMed ID: 34957075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor adaptation to real-life external environments using immersive virtual reality: A pilot study.
    Paralkar S; Varas-Diaz G; Wang S; Bhatt T
    J Bodyw Mov Ther; 2020 Oct; 24(4):152-158. PubMed ID: 33218504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The utility of a virtual reality locomotion interface for studying gait behavior.
    Sheik-Nainar MA; Kaber DB
    Hum Factors; 2007 Aug; 49(4):696-709. PubMed ID: 17702221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fully-Immersive Virtual Reality Setup to Study Gait Modulation.
    Palmisano C; Kullmann P; Hanafi I; Verrecchia M; Latoschik ME; Canessa A; Fischbach M; Isaias IU
    Front Hum Neurosci; 2022; 16():783452. PubMed ID: 35399359
    [No Abstract]   [Full Text] [Related]  

  • 13. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy.
    Sloot LH; Harlaar J; van der Krogt MM
    Gait Posture; 2015 Oct; 42(4):498-504. PubMed ID: 26338532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics.
    Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH
    PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of pelvis control with subacute stroke: A comparison of body-weight- support treadmill training coupled virtual reality system and over-ground training.
    Mao Y; Chen P; Li L; Li L; Huang D
    Technol Health Care; 2015; 23 Suppl 2():S355-64. PubMed ID: 26410502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Immersive Virtual Reality Platform to Enhance Walking Ability of Children with Acquired Brain Injuries.
    Biffi E; Beretta E; Cesareo A; Maghini C; Turconi AC; Reni G; Strazzer S
    Methods Inf Med; 2017 Mar; 56(2):119-126. PubMed ID: 28116417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Accuracy of Virtual Reality Trackers for Computing Spatiotemporal Gait Parameters.
    Guaitolini M; Petros FE; Prado A; Sabatini AM; Agrawal SK
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-selected gait speed--over ground versus self-paced treadmill walking, a solution for a paradox.
    Plotnik M; Azrad T; Bondi M; Bahat Y; Gimmon Y; Zeilig G; Inzelberg R; Siev-Ner I
    J Neuroeng Rehabil; 2015 Feb; 12():20. PubMed ID: 25881130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children.
    Brütsch K; Schuler T; Koenig A; Zimmerli L; -Koeneke SM; Lünenburger L; Riener R; Jäncke L; Meyer-Heim A
    J Neuroeng Rehabil; 2010 Apr; 7():15. PubMed ID: 20412572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study.
    Peruzzi A; Cereatti A; Della Croce U; Mirelman A
    Mult Scler Relat Disord; 2016 Jan; 5():91-6. PubMed ID: 26856951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.