These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 19592791)

  • 1. Robot therapy for stroke survivors: proprioceptive training and regulation of assistance.
    Sanguineti V; Casadio M; Vergaro E; Squeri V; Giannoni P; Morasso PG
    Stud Health Technol Inform; 2009; 145():126-42. PubMed ID: 19592791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimally assistive robot training for proprioception enhancement.
    Casadio M; Morasso P; Sanguineti V; Giannoni P
    Exp Brain Res; 2009 Apr; 194(2):219-31. PubMed ID: 19139867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-adaptive robot training of stroke survivors for continuous tracking movements.
    Vergaro E; Casadio M; Squeri V; Giannoni P; Morasso P; Sanguineti V
    J Neuroeng Rehabil; 2010 Mar; 7():13. PubMed ID: 20230610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Computational Index to Describe Slacking During Robot Therapy.
    Piovesan D
    Adv Exp Med Biol; 2016; 957():351-365. PubMed ID: 28035575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed assistance: a new paradigm of robot training.
    De Santis D; Masia L; Morasso P; Squeri V; Zenzeri J; Casadio M; Riva A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650504. PubMed ID: 24187319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke.
    Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients.
    Casadio M; Giannoni P; Morasso P; Sanguineti V
    Clin Rehabil; 2009 Mar; 23(3):217-28. PubMed ID: 19218297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral robot therapy based on haptics and reinforcement learning: Feasibility study of a new concept for treatment of patients after stroke.
    Squeri V; Casadio M; Vergaro E; Giannoni P; Morasso P; Sanguineti V
    J Rehabil Med; 2009 Nov; 41(12):961-5. PubMed ID: 19841824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating proprioceptive assessment with proprioceptive training of stroke patients.
    Squeri V; Zenzeri J; Morasso P; Basteris A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975500. PubMed ID: 22275696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors.
    Patton JL; Stoykov ME; Kovic M; Mussa-Ivaldi FA
    Exp Brain Res; 2006 Jan; 168(3):368-83. PubMed ID: 16249912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke.
    Lewis GN; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Preliminary Evaluation of a Robot-assisted Assessment-driven Finger Proprioception Therapy.
    Zbytniewska-Megret M; Salzmann C; Ranzani R; Kanzler CM; Gassert R; Liepert J; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot.
    Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision does not always help stroke survivors compensate for impaired limb position sense.
    Herter TM; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2019 Oct; 16(1):129. PubMed ID: 31666135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics.
    Semrau JA; Herter TM; Scott SH; Dukelow SP
    Stroke; 2015 Dec; 46(12):3459-69. PubMed ID: 26542695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke.
    Song R; Tong KY; Hu X; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):371-9. PubMed ID: 18701384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.