These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19592796)

  • 1. Postural and spatial orientation driven by virtual reality.
    Keshner EA; Kenyon RV
    Stud Health Technol Inform; 2009; 145():209-28. PubMed ID: 19592796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of the perception of self-motion on postural parameters.
    Keshner EA; Dokka K; Kenyon RV
    Cyberpsychol Behav; 2006 Apr; 9(2):163-6. PubMed ID: 16640471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using immersive technology for postural research and rehabilitation.
    Keshner EA; Kenyon RV
    Assist Technol; 2004; 16(1):54-62. PubMed ID: 15357148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.
    Meyer GF; Shao F; White MD; Hopkins C; Robotham AJ
    PLoS One; 2013; 8(6):e67651. PubMed ID: 23840760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke.
    Slaboda JC; Keshner EA
    J Neurol; 2012 Dec; 259(12):2664-72. PubMed ID: 22743790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear vection in virtual environments can be strengthened by discordant inertial input.
    Wright WG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1157-60. PubMed ID: 19963991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.
    Chen W; Chao JG; Zhang Y; Wang JK; Chen XW; Tan C
    Aerosp Med Hum Perform; 2017 Oct; 88(10):903-910. PubMed ID: 28923138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural research and rehabilitation in an immersive virtual environment.
    Keshner EA; Kenyon RV; Dhaher Y
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4862-5. PubMed ID: 17271401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system.
    Suárez H; Suárez A; Lavinsky L
    Int Tinnitus J; 2006; 12(1):41-4. PubMed ID: 17147038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between reference frames during subjective vertical estimates in a tilted immersive virtual environment.
    Bringoux L; Bourdin C; Lepecq JC; Sandor PM; Pergandi JM; Mestre D
    Perception; 2009; 38(7):1053-71. PubMed ID: 19764307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postural responses of young adults to collision in virtual world combined with horizontal translation of haptic floor.
    Cikajlo I; Krpič A
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):899-907. PubMed ID: 24802007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses.
    Keshner EA; Kenyon RV
    J Vestib Res; 2000; 10(4-5):207-19. PubMed ID: 11354434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment.
    Keshner EA; Slaboda JC; Buddharaju R; Lanaria L; Norman J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1379-82. PubMed ID: 22254574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural hypo-reactivity in autism is contingent on development and visual environment: a fully immersive virtual reality study.
    Greffou S; Bertone A; Hahler EM; Hanssens JM; Mottron L; Faubert J
    J Autism Dev Disord; 2012 Jun; 42(6):961-70. PubMed ID: 21751061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Egomotion and vection in young and elderly adults.
    Haibach P; Slobounov S; Newell K
    Gerontology; 2009; 55(6):637-43. PubMed ID: 19707011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual reality applications in improving postural control and minimizing falls.
    Virk S; McConville KM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2694-7. PubMed ID: 17946975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual postural threat facilitates the detection of visual stimuli.
    Vermehren M; Carpenter MG
    Neurosci Lett; 2020 Sep; 736():135298. PubMed ID: 32771602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of characteristics of image quality in an immersive environment.
    Duh HB; Lin JJ; Kenyon RV; Parker DE; Furness TA
    Presence (Camb); 2002 Jun; 11(3):324-32. PubMed ID: 12238514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.