These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19592798)

  • 1. Socially assistive robotics for stroke and mild TBI rehabilitation.
    Matarić M; Tapus A; Winstein C; Eriksson J
    Stud Health Technol Inform; 2009; 145():249-62. PubMed ID: 19592798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Socially assistive robotics for post-stroke rehabilitation.
    Matarić MJ; Eriksson J; Feil-Seifer DJ; Winstein CJ
    J Neuroeng Rehabil; 2007 Feb; 4():5. PubMed ID: 17309795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.
    Pérez PJ; Garcia-Zapirain B; Mendez-Zorrilla A
    Technol Health Care; 2015; 23(3):351-7. PubMed ID: 25669209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stroke Rehabilitation: Therapy Robots and Assistive Devices.
    Klamroth-Marganska V
    Adv Exp Med Biol; 2018; 1065():579-587. PubMed ID: 30051408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the quality and quantity of social interaction in a socially assistive robot-guided therapeutic setting.
    Wade E; Dye J; Mead R; Mataric MJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975358. PubMed ID: 22275562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
    Ficocelli M; Terao J; Nejat G
    IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards brain-robot interfaces in stroke rehabilitation.
    Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.
    Oña ED; Cano-de la Cuerda R; Sánchez-Herrera P; Balaguer C; Jardón A
    J Healthc Eng; 2018; 2018():9758939. PubMed ID: 29707189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.
    Fukuda H; Morishita T; Ogata T; Saita K; Hyakutake K; Watanabe J; Shiota E; Inoue T
    Assist Technol; 2016; 28(1):53-6. PubMed ID: 26478988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The value of robotic systems in stroke rehabilitation.
    Masiero S; Poli P; Rosati G; Zanotto D; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2014 Mar; 11(2):187-98. PubMed ID: 24479445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving robotics for neurorehabilitation: enhancing engagement, performance, and learning with auditory feedback.
    Rosati G; Oscari F; Reinkensmeyer DJ; Secoli R; Avanzini F; Spagnol S; Masiero S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975373. PubMed ID: 22275577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual reality and robotics for stroke rehabilitation: where do we go from here?
    Wade E; Winstein CJ
    Top Stroke Rehabil; 2011; 18(6):685-700. PubMed ID: 22436307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robot goes to rehab: a novel gamified system for long-term stroke rehabilitation using a socially assistive robot-methodology and usability testing.
    Feingold-Polak R; Barzel O; Levy-Tzedek S
    J Neuroeng Rehabil; 2021 Jul; 18(1):122. PubMed ID: 34321035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense.
    Breceda EY; Dromerick AW
    Curr Opin Neurol; 2013 Dec; 26(6):595-601. PubMed ID: 24141528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling engagement in long-term, in-home socially assistive robot interventions for children with autism spectrum disorders.
    Jain S; Thiagarajan B; Shi Z; Clabaugh C; Matarić MJ
    Sci Robot; 2020 Feb; 5(39):. PubMed ID: 33022604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic gait assistive technology as means to aggressive mobilization strategy in acute rehabilitation following severe diffuse axonal injury: a case study.
    Stam D; Fernandez J
    Disabil Rehabil Assist Technol; 2017 Jul; 12(5):543-549. PubMed ID: 27049732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct interaction with an assistive robot for individuals with chronic stroke.
    Kmetz B; Markham H; Brewer BR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1264-7. PubMed ID: 22254546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotics in neuro-rehabilitation.
    Pignolo L
    J Rehabil Med; 2009 Nov; 41(12):955-60. PubMed ID: 19841823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy.
    Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G
    J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.