These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19593355)

  • 1. Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm.
    Mohan N; Minaeva O; Goltsman GN; Saleh MF; Nasr MB; Sergienko AV; Saleh BE; Teich MC
    Appl Opt; 2009 Jul; 48(20):4009-17. PubMed ID: 19593355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection.
    McCarthy A; Krichel NJ; Gemmell NR; Ren X; Tanner MG; Dorenbos SN; Zwiller V; Hadfield RH; Buller GS
    Opt Express; 2013 Apr; 21(7):8904-15. PubMed ID: 23571981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors.
    Nasr MB; Minaeva O; Goltsman GN; Sergienko AV; Saleh BE; Teich MC
    Opt Express; 2008 Sep; 16(19):15104-8. PubMed ID: 18795048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime.
    Gerrits T; Calkins B; Tomlin N; Lita AE; Migdall A; Mirin R; Nam SW
    Opt Express; 2012 Oct; 20(21):23798-810. PubMed ID: 23188345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement.
    Tanaka A; Okamoto R; Lim HH; Subashchandran S; Okano M; Zhang L; Kang L; Chen J; Wu P; Hirohata T; Kurimura S; Takeuchi S
    Opt Express; 2012 Nov; 20(23):25228-38. PubMed ID: 23187339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear optical coherence tomography system with a downconverted fringe pattern.
    Koch P; Hüttmann G; Schleiermacher H; Eichholz J; Koch E
    Opt Lett; 2004 Jul; 29(14):1644-6. PubMed ID: 15309846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching.
    Carrasco S; Torres JP; Torner L; Sergienko A; Saleh BE; Teich MC
    Opt Lett; 2004 Oct; 29(20):2429-31. PubMed ID: 15532289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified detector tomography technique applied to a superconducting multiphoton nanodetector.
    Renema JJ; Frucci G; Zhou Z; Mattioli F; Gaggero A; Leoni R; de Dood MJ; Fiore A; van Exter MP
    Opt Express; 2012 Jan; 20(3):2806-13. PubMed ID: 22330516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleaved optical coherence tomography.
    Lee HY; Sudkamp H; Marvdashti T; Ellerbee AK
    Opt Express; 2013 Nov; 21(22):26542-56. PubMed ID: 24216876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.
    Hofherr M; Wetzstein O; Engert S; Ortlepp T; Berg B; Ilin K; Henrich D; Stolz R; Toepfer H; Meyer HG; Siegel M
    Opt Express; 2012 Dec; 20(27):28683-97. PubMed ID: 23263106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed and high-efficiency superconducting nanowire single photon detector array.
    Rosenberg D; Kerman AJ; Molnar RJ; Dauler EA
    Opt Express; 2013 Jan; 21(2):1440-7. PubMed ID: 23389125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronically controlled coherent linear optical sampling for optical coherence tomography.
    Kray S; Spöler F; Hellerer T; Kurz H
    Opt Express; 2010 May; 18(10):9976-90. PubMed ID: 20588852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counting near-infrared single-photons with 95% efficiency.
    Lita AE; Miller AJ; Nam SW
    Opt Express; 2008 Mar; 16(5):3032-40. PubMed ID: 18542389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography.
    Jang J; Lim J; Yu H; Choi H; Ha J; Park JH; Oh WY; Jang W; Lee S; Park Y
    Opt Express; 2013 Feb; 21(3):2890-902. PubMed ID: 23481747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic polarization-sensitive full-field optical coherence tomography.
    Dubois A
    Opt Express; 2012 Apr; 20(9):9962-77. PubMed ID: 22535089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm.
    Nishizawa N; Chen Y; Hsiung P; Ippen EP; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2846-8. PubMed ID: 15645800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification.
    Le Gouët J; Venkatraman D; Wong FN; Shapiro JH
    Opt Express; 2009 Sep; 17(20):17874-87. PubMed ID: 19907576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational imaging based on time-correlated single-photon-counting technique at low light level.
    Yang Y; Shi J; Cao F; Peng J; Zeng G
    Appl Opt; 2015 Nov; 54(31):9277-83. PubMed ID: 26560582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analog CMOS circuit design and characterization for optical coherence tomography signal processing.
    Kariya R; Mathine DL; Barton JK
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2160-3. PubMed ID: 15605863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.