These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 19593374)
1. Computational fragment-based binding site identification by ligand competitive saturation. Guvench O; MacKerell AD PLoS Comput Biol; 2009 Jul; 5(7):e1000435. PubMed ID: 19593374 [TBL] [Abstract][Full Text] [Related]
2. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations. Raman EP; Yu W; Guvench O; Mackerell AD J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594 [TBL] [Abstract][Full Text] [Related]
3. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP; Yu W; Lakkaraju SK; MacKerell AD J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913 [TBL] [Abstract][Full Text] [Related]
4. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design. Faller CE; Raman EP; MacKerell AD; Guvench O Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034 [TBL] [Abstract][Full Text] [Related]
5. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization. Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242 [TBL] [Abstract][Full Text] [Related]
7. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches. Raman EP; Lakkaraju SK; Denny RA; MacKerell AD J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307 [TBL] [Abstract][Full Text] [Related]
9. Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations. Mousaei M; Kudaibergenova M; MacKerell AD; Noskov S J Chem Inf Model; 2020 Dec; 60(12):6489-6501. PubMed ID: 33196188 [TBL] [Abstract][Full Text] [Related]
10. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology. Yu W; Jo S; Lakkaraju SK; Weber DJ; MacKerell AD Proteins; 2019 Apr; 87(4):289-301. PubMed ID: 30582220 [TBL] [Abstract][Full Text] [Related]
11. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696 [TBL] [Abstract][Full Text] [Related]
12. Fragment-based drug discovery using a multidomain, parallel MD-MM/PBSA screening protocol. Zhu T; Lee H; Lei H; Jones C; Patel K; Johnson ME; Hevener KE J Chem Inf Model; 2013 Mar; 53(3):560-72. PubMed ID: 23432621 [TBL] [Abstract][Full Text] [Related]
13. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent. Modi V; Lama D; Sankararamakrishnan R J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956 [TBL] [Abstract][Full Text] [Related]
15. Computational approach to de novo discovery of fragment binding for novel protein states. Konteatis ZD; Klon AE; Zou J; Meshkat S Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598 [TBL] [Abstract][Full Text] [Related]
16. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. Kognole AA; Hazel A; MacKerell AD J Chem Theory Comput; 2022 Sep; 18(9):5672-5691. PubMed ID: 35913731 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Screening Approach for Very Small Fragments: X-ray and Computational Screening on FKBP51. Draxler SW; Bauer M; Eickmeier C; Nadal S; Nar H; Rangel Rojas D; Seeliger D; Zeeb M; Fiegen D J Med Chem; 2020 Jun; 63(11):5856-5864. PubMed ID: 32420743 [TBL] [Abstract][Full Text] [Related]
18. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms. Zhao M; Yu W; MacKerell AD J Phys Chem B; 2024 Aug; 128(30):7362-7375. PubMed ID: 39031121 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Yan Z; Wang J Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900 [TBL] [Abstract][Full Text] [Related]
20. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. Yamaotsu N; Hirono S J Comput Aided Mol Des; 2018 Nov; 32(11):1229-1245. PubMed ID: 30196523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]