These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19593416)

  • 1. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability.
    Gribble PA; Robinson RH
    J Athl Train; 2009; 44(4):350-5. PubMed ID: 19593416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in spatiotemporal landing variables during a dynamic stability task in subjects with CAI.
    Gribble P; Robinson R
    Scand J Med Sci Sports; 2010 Feb; 20(1):e63-71. PubMed ID: 19522752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Limb Joint Kinetics During a Side-Cutting Task in Participants With or Without Chronic Ankle Instability.
    Simpson JD; Stewart EM; Turner AJ; Macias DM; Chander H; Knight AC
    J Athl Train; 2020 Feb; 55(2):169-175. PubMed ID: 31895591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk-rotation differences at maximal reach of the star excursion balance test in participants with chronic ankle instability.
    de la Motte S; Arnold BL; Ross SE
    J Athl Train; 2015 Apr; 50(4):358-65. PubMed ID: 25531142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in neuromuscular control at the knee in individuals with chronic ankle instability.
    Terada M; Pietrosimone BG; Gribble PA
    J Athl Train; 2014; 49(5):599-607. PubMed ID: 25144597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower Extremity Biomechanics During a Drop-Vertical Jump in Participants With or Without Chronic Ankle Instability.
    Herb CC; Grossman K; Feger MA; Donovan L; Hertel J
    J Athl Train; 2018 Apr; 53(4):364-371. PubMed ID: 29667844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isometric Hip Strength and Dynamic Stability of Individuals With Chronic Ankle Instability.
    McCann RS; Bolding BA; Terada M; Kosik KB; Crossett ID; Gribble PA
    J Athl Train; 2018 Jul; 53(7):672-678. PubMed ID: 30084648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Walking Neuromechanics in Patients With Chronic Ankle Instability.
    Son SJ; Kim H; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):684-697. PubMed ID: 31162941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered Movement Biomechanics in Chronic Ankle Instability, Coper, and Control Groups: Energy Absorption and Distribution Implications.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):708-717. PubMed ID: 31184955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower Limb Biomechanics During Drop-Jump Landings on Challenging Surfaces in Individuals With Chronic Ankle Instability.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    J Athl Train; 2022 Nov; 57(11-12):1039-1047. PubMed ID: 35090022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament.
    Terada M; Pietrosimone B; Gribble PA
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1125-30. PubMed ID: 25306177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.
    Hoch MC; Farwell KE; Gaven SL; Weinhandl JT
    J Athl Train; 2015 Aug; 50(8):833-9. PubMed ID: 26067428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower extremity muscle activation in patients with or without chronic ankle instability during walking.
    Feger MA; Donovan L; Hart JM; Hertel J
    J Athl Train; 2015 Apr; 50(4):350-7. PubMed ID: 25562453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered Kinematics and Time to Stabilization During Drop-Jump Landings in Individuals With or Without Functional Ankle Instability.
    Wright CJ; Arnold BL; Ross SE
    J Athl Train; 2016 Jan; 51(1):5-15. PubMed ID: 26794631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review.
    Simpson JD; Stewart EM; Macias DM; Chander H; Knight AC
    Phys Ther Sport; 2019 May; 37():210-219. PubMed ID: 29914742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An examination of ankle, knee, and hip torque production in individuals with chronic ankle instability.
    Gribble PA; Robinson RH
    J Strength Cond Res; 2009 Mar; 23(2):395-400. PubMed ID: 19204570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hop-Stabilization Training and Landing Biomechanics in Athletes With Chronic Ankle Instability: A Randomized Controlled Trial.
    Ardakani MK; Wikstrom EA; Minoonejad H; Rajabi R; Sharifnezhad A
    J Athl Train; 2019 Dec; 54(12):1296-1303. PubMed ID: 31618073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered movement strategies during jump landing/cutting in patients with chronic ankle instability.
    Kim H; Son SJ; Seeley MK; Hopkins JT
    Scand J Med Sci Sports; 2019 Aug; 29(8):1130-1140. PubMed ID: 31050053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound Imaging of the Gluteal Muscles During the Y-Balance Test in Individuals With or Without Chronic Ankle Instability.
    DeJong AF; Mangum LC; Hertel J
    J Athl Train; 2020 Jan; 55(1):49-57. PubMed ID: 31876453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hip kinematics during a stop-jump task in patients with chronic ankle instability.
    Brown CN; Padua DA; Marshall SW; Guskiewicz KM
    J Athl Train; 2011; 46(5):461-7. PubMed ID: 22488131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.