These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19593447)

  • 1. Modeling the repertoire of true tumor-specific MHC I epitopes in a human tumor.
    Srivastava N; Srivastava PK
    PLoS One; 2009 Jul; 4(7):e6094. PubMed ID: 19593447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving immunotherapy by conditionally enhancing MHC class I presentation of tumor antigen-derived Peptide epitopes.
    Storkus WJ; Herrem C; Kawabe M; Cohen PA; Bukowski RM; Finke JH; Wesa AK
    Crit Rev Immunol; 2007; 27(5):485-93. PubMed ID: 18197809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker.
    Jardim DL; Goodman A; de Melo Gagliato D; Kurzrock R
    Cancer Cell; 2021 Feb; 39(2):154-173. PubMed ID: 33125859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the antigenic fingerprint of each individual cancer for immunotherapy of human cancer: genomics shows a new way and its challenges.
    Srivastava PK; Duan F
    Cancer Immunol Immunother; 2013 May; 62(5):967-74. PubMed ID: 23604106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of cancer neoepitopes needs new rules.
    Brennick CA; George MM; Srivastava PK; Karandikar SH
    Semin Immunol; 2020 Feb; 47():101387. PubMed ID: 31952902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer.
    Trincado JL; Reixachs-Solé M; Pérez-Granado J; Fugmann T; Sanz F; Yokota J; Eyras E
    PLoS Comput Biol; 2021 Sep; 17(9):e1009411. PubMed ID: 34529669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival.
    Brown SD; Warren RL; Gibb EA; Martin SD; Spinelli JJ; Nelson BH; Holt RA
    Genome Res; 2014 May; 24(5):743-50. PubMed ID: 24782321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [MHC tetramers: tracking specific immunity].
    Kosor E; Gagro A; Drazenović V; Kuzman I; Jeren T; Rakusić S; Rabatić S; Markotić A; Gotovac K; Sabioncello A; Cecuk E; Kerhin-Brkljacić V; Gjenero-Margan I; Kaić B; Mlinarić-Galinović G; Kastelan A; Dekaris D
    Acta Med Croatica; 2003; 57(4):255-9. PubMed ID: 14639858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy.
    Wilson EA; Anderson KS
    Expert Rev Proteomics; 2018 Dec; 15(12):1065-1077. PubMed ID: 30408427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches.
    da Costa AS; Fernandes TVA; Bello ML; de Souza TLF
    Comput Biol Chem; 2021 Jun; 92():107459. PubMed ID: 33636637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putting a number on neoepitope quality.
    Jarchum I
    Nat Biotechnol; 2018 Feb; 36(2):151. PubMed ID: 29406493
    [No Abstract]   [Full Text] [Related]  

  • 12. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of cancer vaccine immunogens derived from major histocompatibility complex (MHC) class I molecules using variable epitope libraries.
    Servín-Blanco R; Chávaro-Ortiz RM; Zamora-Alvarado R; Martínez-Cortes F; Gevorkian G; Manoutcharian K
    Immunol Lett; 2018 Dec; 204():47-54. PubMed ID: 30339819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing neoantigens for personalized cancer immunotherapy.
    Capietto AH; Jhunjhunwala S; Delamarre L
    Curr Opin Immunol; 2017 Jun; 46():58-65. PubMed ID: 28478383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunogenicity and tolerogenicity of self-major histocompatibility complex peptides.
    Benichou G; Takizawa PA; Ho PT; Killion CC; Olson CA; McMillan M; Sercarz EE
    J Exp Med; 1990 Nov; 172(5):1341-6. PubMed ID: 1700053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity.
    Duan F; Duitama J; Al Seesi S; Ayres CM; Corcelli SA; Pawashe AP; Blanchard T; McMahon D; Sidney J; Sette A; Baker BM; Mandoiu II; Srivastava PK
    J Exp Med; 2014 Oct; 211(11):2231-48. PubMed ID: 25245761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor Antigens beyond the Human Exome.
    Emilius L; Bremm F; Binder AK; Schaft N; Dörrie J
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vaccination with High-Affinity Epitopes Impairs Antitumor Efficacy by Increasing PD-1 Expression on CD8
    Zahm CD; Colluru VT; McNeel DG
    Cancer Immunol Res; 2017 Aug; 5(8):630-641. PubMed ID: 28634215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaccine therapy for cancer.
    Linehan DC; Goedegebuure PS; Eberlein TJ
    Ann Surg Oncol; 1996 Mar; 3(2):219-28. PubMed ID: 8646525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T cell tolerance to tumors and cancer immunotherapy.
    Shafer-Weaver K; Anderson M; Malyguine A; Hurwitz AA
    Adv Exp Med Biol; 2007; 601():357-68. PubMed ID: 17713024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.