BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19593553)

  • 1. Explicit eye movements failed to facilitate the precision of subsequent attentional localization.
    Hein E; Moore CM
    Exp Brain Res; 2009 Aug; 197(4):387-93. PubMed ID: 19593553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating temporal properties of covert shifts of visual attention using the attentional walk task.
    Hein E; Moore CM
    Psychon Bull Rev; 2010 Feb; 17(1):41-6. PubMed ID: 20081159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covert orienting of attention and overt eye movements activate identical brain regions.
    de Haan B; Morgan PS; Rorden C
    Brain Res; 2008 Apr; 1204():102-11. PubMed ID: 18329633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention.
    Cutrell EB; Marrocco RT
    Exp Brain Res; 2002 May; 144(1):103-13. PubMed ID: 11976764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sleep deprivation and low arousal on eye movements and spatial attention.
    Fimm B; Blankenheim A
    Neuropsychologia; 2016 Nov; 92():115-128. PubMed ID: 27018452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the link between attentional search and the oculomotor system: Is preattentive search restricted to the range of eye movements?
    Casteau S; Smith DT
    Atten Percept Psychophys; 2020 Feb; 82(2):518-532. PubMed ID: 31942703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye movements are not mandatorily preceded by the N2pc component.
    Talcott TN; Gaspelin N
    Psychophysiology; 2021 Jun; 58(6):e13821. PubMed ID: 33778965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous orienting of attention depends upon the ability to execute eye movements.
    Smith DT; Rorden C; Jackson SR
    Curr Biol; 2004 May; 14(9):792-5. PubMed ID: 15120071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention.
    Eimer M; Van Velzen J; Gherri E; Press C
    Brain Res; 2007 Mar; 1135(1):154-66. PubMed ID: 17198687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective orienting to pleasant versus unpleasant visual scenes.
    Fernández-Martín A; Calvo MG
    Cognition; 2016 Oct; 155():108-112. PubMed ID: 27371766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent inhibition of covert shifts of attention.
    Buonocore A; Dietze N; McIntosh RD
    Exp Brain Res; 2021 Aug; 239(8):2635-2648. PubMed ID: 34216231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The asymmetrical influence of increasing time-on-task on attentional disengagement.
    Paladini RE; Diana L; Nyffeler T; Mosimann UP; Nef T; Müri RM; Cazzoli D
    Neuropsychologia; 2016 Nov; 92():107-114. PubMed ID: 26945506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overt and covert attention to location-based reward.
    McCoy B; Theeuwes J
    Vision Res; 2018 Jan; 142():27-39. PubMed ID: 29100871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To look or not to look: dissociating presaccadic and covert spatial attention.
    Li HH; Hanning NM; Carrasco M
    Trends Neurosci; 2021 Aug; 44(8):669-686. PubMed ID: 34099240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsaccadic correlates of covert attention and crowding.
    Prahalad KS; Coates DR
    J Vis; 2022 Sep; 22(10):15. PubMed ID: 36121661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention.
    Kelly SP; Foxe JJ; Newman G; Edelman JA
    Eur J Neurosci; 2010 May; 31(9):1690-700. PubMed ID: 20525082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A temporal dependency account of attentional inhibition in oculomotor control.
    Weaver MD; van Zoest W; Hickey C
    Neuroimage; 2017 Feb; 147():880-894. PubMed ID: 27836709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive remapping of attention across eye movements.
    Rolfs M; Jonikaitis D; Deubel H; Cavanagh P
    Nat Neurosci; 2011 Feb; 14(2):252-6. PubMed ID: 21186360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration.
    Cazzoli D; Jung S; Nyffeler T; Nef T; Wurtz P; Mosimann UP; Müri RM
    Neuropsychologia; 2015 Jul; 74():37-41. PubMed ID: 25613645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.