BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19593557)

  • 1. Biocatalytic production of (S)-4-bromo-3-hydroxybutyrate and structurally related chemicals and their applications.
    Asako H; Shimizu M; Itoh N
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):397-405. PubMed ID: 19593557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of NADPH-dependent aldo-keto reductase from Penicillium citrinum by directed evolution to improve thermostability and enantioselectivity.
    Asako H; Shimizu M; Itoh N
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):805-12. PubMed ID: 18626639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and cDNA cloning of NADPH-dependent aldoketoreductase, involved in asymmetric reduction of methyl 4-bromo-3-oxobutyrate, from Penicillium citrinum IFO4631.
    Asako H; Wakita R; Matsumura K; Shimizu M; Sakai J; Itoh N
    Appl Environ Microbiol; 2005 Feb; 71(2):1101-4. PubMed ID: 15691974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of NADPH-dependent aldo-keto reductase specific for beta-keto esters from Penicillium citrinum, and production of methyl (S)-4-bromo-3-hydroxybutyrate.
    Itoh N; Asako H; Banno K; Makino Y; Shinohara M; Dairi T; Wakita R; Shimizu M
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):53-62. PubMed ID: 15338078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of optically pure alcohols by asymmetric hydrogen-transfer biocatalysis: application of engineered enzymes in a 2-propanol-water medium.
    Itoh N; Isotani K; Nakamura M; Inoue K; Isogai Y; Makino Y
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1075-85. PubMed ID: 21739266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ethyl ( S)-4-chloro-3-hydroxybutanoate using fabG-homologues.
    Yamamoto H; Matsuyama A; Kobayashi Y
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):133-9. PubMed ID: 12655455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of ethyl (S)-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption.
    Chen LF; Fan HY; Zhang YP; Wei W; Lin JP; Wei DZ; Wang HL
    J Biotechnol; 2017 Jun; 251():68-75. PubMed ID: 28427921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives.
    Ye Q; Ouyang P; Ying H
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):513-22. PubMed ID: 20957354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic synthesis of (S)-4-chloro-3-hydroxybutanoate ethyl ester using a recombinant whole-cell catalyst.
    Ye Q; Cao H; Zang G; Mi L; Yan M; Wang Y; Zhang Y; Li X; Li J; Xu L; Xiong J; Ouyang P; Ying H
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1277-85. PubMed ID: 20725723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis.
    Li M; Zhang ZJ; Kong XD; Yu HL; Zhou J; Xu JH
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389544
    [No Abstract]   [Full Text] [Related]  

  • 11. Production of (R)-3-quinuclidinol by E. coli biocatalysts possessing NADH-dependent 3-quinuclidinone reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia alcohol dehydrogenase (LSADH).
    Isotani K; Kurokawa J; Itoh N
    Int J Mol Sci; 2012 Oct; 13(10):13542-53. PubMed ID: 23202966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of (S)-4-chloro-3-hydroxybutyrate by microbial resolution using hydrolase from Rhizobium sp. DS-S-51.
    Nakagawa A; Suzuki T; Kato K; Shinmyo A; Suzuki T
    J Biosci Bioeng; 2008 Apr; 105(4):313-8. PubMed ID: 18499045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase.
    Yokoo T; Matsumoto K; Ooba T; Morimoto K; Taguchi S
    Biosci Biotechnol Biochem; 2015; 79(6):986-8. PubMed ID: 25647430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement on production of (R)-4-chloro-3-hydroxybutyrate and (S)-3-hydroxy-gamma-butyrolactone with recombinant Escherichia coli cells.
    Nakagawa A; Idogaki H; Kato K; Shinmyo A; Suzuki T
    J Biosci Bioeng; 2006 Feb; 101(2):97-103. PubMed ID: 16569603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate.
    Valentin HE; Reiser S; Gruys KJ
    Biotechnol Bioeng; 2000 Feb; 67(3):291-9. PubMed ID: 10620259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase.
    Ye Q; Cao H; Mi L; Yan M; Wang Y; He Q; Li J; Xu L; Chen Y; Xiong J; Ouyang P; Ying H
    Bioresour Technol; 2010 Nov; 101(22):8911-4. PubMed ID: 20630744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric synthesis of (S)-4-chloro-3-hydroxybutanoate by sorbose reductase from Candida albicans with two co-existing recombinant Escherichia coli strains.
    Cai P; An M; Xu S; Yan M; Hao N; Li Y; Xu L
    Biosci Biotechnol Biochem; 2015; 79(7):1090-3. PubMed ID: 25765951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system.
    Liu ZQ; Ye JJ; Shen ZY; Hong HB; Yan JB; Lin Y; Chen ZX; Zheng YG; Shen YC
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2119-29. PubMed ID: 25487888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli].
    Sun Y; Zhang R; Xu Y
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1629-33. PubMed ID: 19271538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.