BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19593652)

  • 1. Evolutionary alkaline transition in human cytochrome c.
    Ying T; Zhong F; Xie J; Feng Y; Wang ZH; Huang ZX; Tan X
    J Bioenerg Biomembr; 2009 Jun; 41(3):251-7. PubMed ID: 19593652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR investigation of the alkaline-like conformational transition of horse heart cytochrome c in the presence of exogenous thiazole.
    Yao Y; Tang W
    Biophys Chem; 2003 Jun; 104(2):459-68. PubMed ID: 12878313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naturally Occurring Disease-Related Mutations in the 40-57 Ω-Loop of Human Cytochrome c Control Triggering of the Alkaline Isomerization.
    Deacon OM; Svistunenko DA; Moore GR; Wilson MT; Worrall JAR
    Biochemistry; 2018 Jul; 57(29):4276-4288. PubMed ID: 29949346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational stability and dynamics of cytochrome c affect its alkaline isomerization.
    Tomásková N; Varhac R; Zoldák G; Oleksáková L; Sedláková D; Sedlák E
    J Biol Inorg Chem; 2007 Feb; 12(2):257-66. PubMed ID: 17120073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline transition of horse heart cytochrome c in the presence of ZnO nanoparticles.
    Simšíková M; Antalík M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():410-4. PubMed ID: 23174455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of trimethyllysine 72 to alanine enhances His79-heme-mediated dynamics of iso-1-cytochrome c.
    Cherney MM; Junior CC; Bowler BE
    Biochemistry; 2013 Feb; 52(5):837-46. PubMed ID: 23311346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a K72A Mutation on the Structure, Stability, Dynamics, and Peroxidase Activity of Human Cytochrome c.
    Nold SM; Lei H; Mou TC; Bowler BE
    Biochemistry; 2017 Jul; 56(26):3358-3368. PubMed ID: 28598148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion-Specific Effects on the Alkaline State of Cytochrome c.
    Sedlák E; Žár T; Varhač R; Musatov A; Tomášková N
    Biochemistry (Mosc); 2021 Jan; 86(1):59-73. PubMed ID: 33705282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ATP and sodium chloride on the cytochrome c-cardiolipin interaction: the contrasting behavior of the horse heart and yeast proteins.
    Sinibaldi F; Droghetti E; Polticelli F; Piro MC; Di Pierro D; Ferri T; Smulevich G; Santucci R
    J Inorg Biochem; 2011 Nov; 105(11):1365-72. PubMed ID: 21946436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the dynamics of a His73-heme alkaline transition in a destabilized variant of yeast iso-1-cytochrome c with conformationally gated electron transfer methods.
    Bandi S; Bowler BE
    Biochemistry; 2011 Nov; 50(46):10027-40. PubMed ID: 22026475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect on intrinsic peroxidase activity of substituting coevolved residues from Ω-loop C of human cytochrome c into yeast iso-1-cytochrome c.
    Frederick AK; Thompson SL; Vakharia ZM; Cherney MM; Lei H; Evenson G; Bowler BE
    J Inorg Biochem; 2022 Jul; 232():111819. PubMed ID: 35428021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxidase activity of cytochrome c in its compact state depends on dynamics of the heme region.
    Tomášková N; Varhač R; Lysáková V; Musatov A; Sedlák E
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1073-1083. PubMed ID: 30282605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer and conformational transitions of cytochrome c are modulated by the same dynamical features.
    Oviedo-Rouco S; Perez-Bertoldi JM; Spedalieri C; Castro MA; Tomasina F; Tortora V; Radi R; Murgida DH
    Arch Biochem Biophys; 2020 Feb; 680():108243. PubMed ID: 31899145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Heme Propionate Staples the Structure of Cytochrome
    Deng Y; Weaver ML; Hoke KR; Pletneva EV
    Inorg Chem; 2019 Oct; 58(20):14085-14106. PubMed ID: 31589413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c.
    Caroppi P; Sinibaldi F; Santoni E; Howes BD; Fiorucci L; Ferri T; Ascoli F; Smulevich G; Santucci R
    J Biol Inorg Chem; 2004 Dec; 9(8):997-1006. PubMed ID: 15503233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of a conserved proline and the alkaline conformational change in iso-2-cytochrome c.
    Nall BT; Zuniga EH; White TB; Wood LC; Ramdas L
    Biochemistry; 1989 Dec; 28(25):9834-9. PubMed ID: 2558730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP specifically drives refolding of non-native conformations of cytochrome c.
    Sinibaldi F; Mei G; Polticelli F; Piro MC; Howes BD; Smulevich G; Santucci R; Ascoli F; Fiorucci L
    Protein Sci; 2005 Apr; 14(4):1049-58. PubMed ID: 15741329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct mechanisms for the pro-apoptotic conformational transition and alkaline transition in cytochrome c.
    Ying T; Wang ZH; Zhong F; Tan X; Huang ZX
    Chem Commun (Camb); 2010 May; 46(20):3541-3. PubMed ID: 20379610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.
    Sun MH; Liu SQ; Du KJ; Nie CM; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():130-7. PubMed ID: 24051281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.