BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19593748)

  • 21. Deleterious mutations of a claw keratin in multiple taxa of reptiles.
    Dalla Valle L; Benato F; Rossi C; Alibardi L; Tschachler E; Eckhart L
    J Mol Evol; 2011 Mar; 72(3):265-73. PubMed ID: 21181402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution and characterization of proteins associated with cornification in the epidermis of gecko lizard.
    Alibardi L; Toni M
    Tissue Cell; 2005 Dec; 37(6):423-33. PubMed ID: 16171836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a new class of cysteine-glycine-proline-rich beta-proteins (beta-keratins) and their expression in snake epidermis.
    Dalla Valle L; Nardi A; Alibardi L
    J Anat; 2010 Mar; 216(3):356-67. PubMed ID: 20070430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of beta-keratins in lizard epidermis: electrophoresis, immunocytochemical and in situ-hybridization study.
    Toni M; Alibardi L
    Tissue Cell; 2007 Feb; 39(1):1-11. PubMed ID: 17101163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunolocalization of keratin-associated beta-proteins in developing epidermis of lizard suggests that adhesive setae contain glycine--cysteine-rich proteins.
    Alibardi L
    J Morphol; 2013 Jan; 274(1):97-107. PubMed ID: 23108977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of beta-keratins and associated proteins in adult and regenerating epidermis of lizards.
    Alibardi L; Spisni E; Frassanito AG; Toni M
    Tissue Cell; 2004 Oct; 36(5):333-49. PubMed ID: 15385150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis.
    Alibardi L
    Micron; 2014 Feb; 57():31-40. PubMed ID: 24246129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine-cysteine-rich proteins contribute to their flexibility and adhesiveness.
    Alibardi L
    J Exp Zool A Ecol Genet Physiol; 2013 Mar; 319(3):166-78. PubMed ID: 23423812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunolocalization of specific beta-proteins in pad lamellae of the digits in the lizard Anolis carolinensis suggests that cysteine-rich beta-proteins provides flexibility.
    Alibardi L
    J Morphol; 2014 May; 275(5):504-13. PubMed ID: 24843861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds.
    Dalla Valle L; Nardi A; Toni M; Emera D; Alibardi L
    J Anat; 2009 Feb; 214(2):284-300. PubMed ID: 19207990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunolocalization of alpha-keratins and associated beta-proteins in lizard epidermis shows that acidic keratins mix with basic keratin-associated beta-proteins.
    Alibardi L
    Protoplasma; 2014 Jul; 251(4):827-37. PubMed ID: 24276370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hard (Beta-)keratins in the epidermis of reptiles: composition, sequence, and molecular organization.
    Toni M; Dalla Valle L; Alibardi L
    J Proteome Res; 2007 Sep; 6(9):3377-92. PubMed ID: 17705524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins.
    Fraser RD; Parry DA
    J Struct Biol; 2011 Feb; 173(2):391-405. PubMed ID: 20869443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.
    Greenwold MJ; Sawyer RH
    J Exp Zool B Mol Dev Evol; 2013 Sep; 320(6):393-405. PubMed ID: 23744807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives.
    Alibardi L
    Int Rev Cytol; 2006; 253():177-259. PubMed ID: 17098057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB; Eckhart L; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins.
    Alibardi L
    J Morphol; 2013 Feb; 274(2):175-93. PubMed ID: 23065677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis.
    Wu Q; Wei Z; Yang Z; Wang T; Ren L; Hu X; Meng Q; Guo Y; Zhu Q; Robert J; Hammarström L; Li N; Zhao Y
    Dev Comp Immunol; 2010 May; 34(5):579-89. PubMed ID: 20056120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem amino acid repeats in the green anole (Anolis carolinensis) and other squamates may have a role in increasing genetic variability.
    Wu R; Liu Q; Zhang P; Liang D
    BMC Genomics; 2016 Feb; 17():109. PubMed ID: 26868501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis.
    Alibardi L
    Tissue Cell; 2013 Aug; 45(4):241-52. PubMed ID: 23608345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.