These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 19593757)

  • 1. Mathematical modeling of elution curves for a protein mixture in ion exchange chromatography applied to high protein concentration.
    Orellana CA; Shene C; Asenjo JA
    Biotechnol Bioeng; 2009 Oct; 104(3):572-81. PubMed ID: 19593757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of elution curves for a protein mixture in ion exchange chromatography and for the optimal selection of operational conditions.
    Shene C; Lucero A; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2006 Nov; 95(4):704-13. PubMed ID: 16739221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of hydrophobic interaction chromatography using a mathematical model of elution curves of a protein mixture.
    Lienqueo ME; Shene C; Asenjo J
    J Mol Recognit; 2009; 22(2):110-20. PubMed ID: 18979460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein purification using chromatography: selection of type, modelling and optimization of operating conditions.
    Asenjo JA; Andrews BA
    J Mol Recognit; 2009; 22(2):65-76. PubMed ID: 18546092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.
    Ishihara T; Kadoya T; Yamamoto S
    J Chromatogr A; 2007 Aug; 1162(1):34-40. PubMed ID: 17399733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear gradient isotherm parameter estimation for proteins with consideration of salt competition and multiple forms.
    Whitley RD; Berninger JA; Rouhana N; Wang NH
    Biotechnol Prog; 1991; 7(6):544-53. PubMed ID: 1367754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein adsorption-dependent electro-kinetic pore flow: modeling of ion-exchange electrochromatography with an oscillatory transverse electric field.
    Yuan W; Zhao YP; Zhang Q; Sun Y
    Electrophoresis; 2010 Mar; 31(5):944-51. PubMed ID: 20191556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography.
    Tan GM; Shi QH; Sun Y
    J Chromatogr A; 2005 Dec; 1098(1-2):131-7. PubMed ID: 16314169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling.
    Hamdaoui O
    J Hazard Mater; 2009 Jan; 161(2-3):737-46. PubMed ID: 18486328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakthrough performance of plasmid DNA on ion-exchange membrane columns.
    Montesinos-Cisneros RM; Olivas Jde L; Ortega J; Guzmán R; Tejeda-Mansir A
    Biotechnol Prog; 2007; 23(4):881-7. PubMed ID: 17567039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC; Lenhoff AM
    J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipoprotein A-I(Milano) anion exchange chromatography: Self association and adsorption equilibrium.
    Bankston TE; Carta G
    Biotechnol J; 2010 Oct; 5(10):1028-39. PubMed ID: 20931599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions.
    Jiang W; Hearn MT
    Anal Biochem; 1996 Nov; 242(1):45-54. PubMed ID: 8923963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion exchange chromatography of proteins-predictions of elution curves and operating conditions. II. Experimental verification.
    Yamamoto S; Nakanishi K; Matsuno R; Kamijubo T
    Biotechnol Bioeng; 1983 May; 25(5):1373-91. PubMed ID: 18548766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elution relationships to model affinity chromatography using a general rate model.
    Sandoval G; Andrews BA; Asenjo JA
    J Mol Recognit; 2012 Nov; 25(11):571-9. PubMed ID: 23108617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling and simulation of inulinase adsorption in expanded bed column.
    Moraes CC; Mazutti MA; Rodrigues MI; Filho FM; Kalil SJ
    J Chromatogr A; 2009 May; 1216(20):4395-401. PubMed ID: 19328491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of human serum albumin on strong cation exchange resins: II. model analysis.
    Voitl A; Butté A; Morbidelli M
    J Chromatogr A; 2010 Aug; 1217(34):5492-500. PubMed ID: 20650461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins.
    Staby A; Jensen RH; Bensch M; Hubbuch J; Dünweber DL; Krarup J; Nielsen J; Lund M; Kidal S; Hansen TB; Jensen IH
    J Chromatogr A; 2007 Sep; 1164(1-2):82-94. PubMed ID: 17658538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.
    Lu JG
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1613-20. PubMed ID: 15547973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of monoclonal antibody variants on analytical cation-exchange resin.
    Melter L; Ströhlein G; Butté A; Morbidelli M
    J Chromatogr A; 2007 Jun; 1154(1-2):121-31. PubMed ID: 17451722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.