BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1369 related articles for article (PubMed ID: 19594131)

  • 1. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane topology prediction by hydropathy profile alignment: membrane topology of the Na(+)-glutamate transporter GltS.
    Dobrowolski A; Sobczak-Elbourne I; Lolkema JS
    Biochemistry; 2007 Mar; 46(9):2326-32. PubMed ID: 17269795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary transporters of the 2HCT family contain two homologous domains with inverted membrane topology and trans re-entrant loops.
    Lolkema JS; Sobczak I; Slotboom DJ
    FEBS J; 2005 May; 272(9):2334-44. PubMed ID: 15853816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loop VIII/IX of the Na+-citrate transporter CitS of Klebsiella pneumoniae folds into an amphipathic surface helix.
    Sobczak I; Lolkema JS
    Biochemistry; 2005 Apr; 44(14):5461-70. PubMed ID: 15807539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved residues R420 and Q428 in a cytoplasmic loop of the citrate/malate transporter CimH of Bacillus subtilis are accessible from the external face of the membrane.
    Krom BP; Lolkema JS
    Biochemistry; 2003 Jan; 42(2):467-74. PubMed ID: 12525174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking of trans reentrant loops in the Na(+)-citrate transporter CitS of Klebsiella pneumoniae.
    Dobrowolski A; Fusetti F; Lolkema JS
    Biochemistry; 2010 Jun; 49(21):4509-15. PubMed ID: 20420430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linking of dimeric CitS and GltS transport proteins.
    Krupnik T; Dobrowolski A; Lolkema JS
    Mol Membr Biol; 2011 Aug; 28(5):243-53. PubMed ID: 21599460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turnover and accessibility of a reentrant loop of the Na+-glutamate transporter GltS are modulated by the central cytoplasmic loop.
    Krupnik T; Sobczak-Elbourne I; Lolkema JS
    Mol Membr Biol; 2011; 28(7-8):462-72. PubMed ID: 21995702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of antiparallel two-domain membrane proteins. Swapping domains in the glutamate transporter GltS.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2010 Jul; 49(29):5972-4. PubMed ID: 20557112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter of Escherichia coli.
    Kimura T; Nakatani M; Kawabe T; Yamaguchi A
    Biochemistry; 1998 Apr; 37(16):5475-80. PubMed ID: 9548929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projection structure by single-particle electron microscopy of secondary transport proteins GltT, CitS, and GltS.
    Mościcka KB; Krupnik T; Boekema EJ; Lolkema JS
    Biochemistry; 2009 Jul; 48(28):6618-23. PubMed ID: 19518127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of transmembrane domain IX in the Na+/proline transporter PutP.
    Raba M; Baumgartner T; Hilger D; Klempahn K; Härtel T; Jung K; Jung H
    J Mol Biol; 2008 Oct; 382(4):884-93. PubMed ID: 18692508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter.
    Olsowski A; Monden I; Keller K
    Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.
    Frillingos S; Ujwal ML; Sun J; Kaback HR
    Protein Sci; 1997 Feb; 6(2):431-7. PubMed ID: 9041646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2.
    Bøttger P; Pedersen L
    FEBS J; 2005 Jun; 272(12):3060-74. PubMed ID: 15955065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.